Concept

Théorème fondamental de la théorie de Galois

En mathématiques et plus précisément en algèbre commutative, le théorème fondamental de la théorie de Galois établit une correspondance entre les extensions intermédiaires d'une extension finie de corps et leurs groupes de Galois, dès lors que l'extension est galoisienne, c’est-à-dire séparable et normale. Soient L une extension galoisienne finie de K et G son groupe de Galois. Pour tout sous-groupe H de G, on note LH le sous-corps de L constitué des éléments fixés par chaque élément de H. L est une extension galoisienne de LH et H est le groupe de Galois associé. L'application qui à chaque H associe LH est une bijection de l'ensemble des sous-groupes de G dans l'ensemble des corps intermédiaires compris entre K et L. L'extension LH de K est galoisienne si et seulement si H est un sous-groupe normal de G. Alors, le groupe de Galois de cette extension est isomorphe au groupe quotient G/H. Le cas général. Si on ne suppose plus l'extension finie, le groupe de Galois Gal(L/K), c'est-à-dire le groupe des K-automorphismes de L, est un groupe profini (limite projective de groupes finis), muni de la topologie profinie. Le théorème fondamental s'énonce comme suit : Les trois premières propositions ci-dessous sont démontrées dans le paragraphe « Théorème fondamental de la théorie de Galois » de l'article sur les extensions de Galois et la quatrième dans le paragraphe « Morphisme dans la clôture algébrique » de l'article sur les extensions séparables. La cinquième est immédiate. (Lemme d'Artin) Soient L un corps, G un groupe fini d'automorphismes de L, d'ordre n et K le sous-corps des éléments fixés par tous les éléments de G. Alors L est une extension galoisienne de K, de degré n. Si L est une extension galoisienne de K et si F est un corps intermédiaire (), alors L est une extension galoisienne de F et Gal(L/F) est le sous-groupe de Gal(L/K) constitué des éléments qui laissent F invariant. Si L est une extension galoisienne finie de K, alors le sous-corps des éléments de L fixés par tous les éléments de Gal(L/K) est réduit à K.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (9)
MATH-317: Algebra V - Galois theory
Galois theory lies at the interface of Field Theory and Group Theory. It aims to describe the algebraic symmetries of fields. We will focus on Galois theory for finite field extensions and some applic
MATH-482: Number theory I.a - Algebraic number theory
Algebraic number theory is the study of the properties of solutions of polynomial equations with integral coefficients; Starting with concrete problems, we then introduce more general notions like alg
MATH-494: Topics in arithmetic geometry
P-adic numbers are a number theoretic analogue of the real numbers, which interpolate between arithmetics, analysis and geometry. In this course we study their basic properties and give various applic
Afficher plus
Concepts associés (16)
Degree of a field extension
In mathematics, more specifically field theory, the degree of a field extension is a rough measure of the "size" of the field extension. The concept plays an important role in many parts of mathematics, including algebra and number theory — indeed in any area where fields appear prominently. Suppose that E/F is a field extension. Then E may be considered as a vector space over F (the field of scalars). The dimension of this vector space is called the degree of the field extension, and it is denoted by [E:F].
Extension de Galois
En mathématiques, une extension de Galois (parfois nommée extension galoisienne) est une extension normale séparable. L'ensemble des automorphismes de l'extension possède une structure de groupe appelée groupe de Galois. Cette structure de groupe caractérise l'extension, ainsi que ses sous-corps. Les extensions de Galois sont des structures largement utilisées pour la démonstration de théorèmes en théorie algébrique des nombres, comme le dernier théorème de Fermat, ou en théorie de Galois pure, comme le théorème d'Abel-Ruffini.
Extension séparable
En mathématiques, et plus spécifiquement en algèbre, une extension L d'un corps K est dite séparable si elle est algébrique et si le polynôme minimal de tout élément de L n'admet que des racines simples (dans une clôture algébrique de K). La séparabilité est une des propriétés des extensions de Galois. Toute extension finie séparable satisfait le théorème de l'élément primitif. Les corps dont toutes les extensions algébriques sont séparables (c'est-à-dire les corps parfaits) sont nombreux.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.