Équation de SchrödingerL'équation de Schrödinger, conçue par le physicien autrichien Erwin Schrödinger en 1925, est une équation fondamentale en mécanique quantique. Elle décrit l'évolution dans le temps d'une particule massive non relativiste, et remplit ainsi le même rôle que la relation fondamentale de la dynamique en mécanique classique. Au début du , il était devenu clair que la lumière présentait une dualité onde-corpuscule, c'est-à-dire qu'elle pouvait se manifester, selon les circonstances, soit comme une particule, le photon, soit comme une onde électromagnétique.
Matrice d'une application linéaireEn algèbre linéaire, la matrice d'une application linéaire est une matrice de scalaires qui permet de représenter une application linéaire entre deux espaces vectoriels de dimensions finies, étant donné le choix d'une base pour chacun d'eux. Soient : E et F deux espaces vectoriels sur un corps commutatif K, de dimensions respectives n et m ; B = (e, ... , e) une base de E, C une base de F ; φ une application de E dans F.
Méthode du gradient biconjuguéEn mathématiques, plus spécifiquement en analyse numérique, la méthode du gradient biconjugué est un algorithme permettant de résoudre un système d'équations linéaires Contrairement à la méthode du gradient conjugué, cet algorithme ne nécessite pas que la matrice soit auto-adjointe, en revanche, la méthode requiert des multiplications par la matrice adjointe . Choisir , , un préconditionneur régulier (on utilise fréquemment ) et ; for do ( et sont le résidus); .
Inverse iterationIn numerical analysis, inverse iteration (also known as the inverse power method) is an iterative eigenvalue algorithm. It allows one to find an approximate eigenvector when an approximation to a corresponding eigenvalue is already known. The method is conceptually similar to the power method. It appears to have originally been developed to compute resonance frequencies in the field of structural mechanics.
Spectre d'une matriceEn mathématiques, le spectre d'une matrice est l'ensemble de ses valeurs propres. En général, si est un opérateur linéaire sur n'importe quel espace vectoriel, alors son spectre est l'ensemble des scalaires tels que n'est pas inversible. Le déterminant d'une matrice est égal au produit de ses valeurs propres. De la même façon, la trace d'une matrice est égale à la somme de ses valeurs propres. On peut, donc, définir un pseudo-déterminant d'une matrice unitaire comme étant le produit de ses valeurs propres non nulles.
Produit de KroneckerEn mathématiques, le produit de Kronecker est une opération portant sur les matrices. Il s'agit d'un cas particulier du produit tensoriel. Il est ainsi dénommé en hommage au mathématicien allemand Leopold Kronecker. Soient A une matrice de taille m x n et B une matrice de taille p x q. Leur produit tensoriel est la matrice A ⊗ B de taille mp par nq, définie par blocs successifs de taille p x q, le bloc d'indice i,j valant a B En d'autres termes Ou encore, en détaillant les coefficients, Comme le montre l'exemple ci-dessous, le produit de Kronecker de deux matrices consiste à recopier plusieurs fois la deuxième matrice, en la multipliant par le coefficient correspondant à un terme de la première matrice.
EigenfaceLes eigenfaces sont un ensemble de vecteurs propres utilisés dans le domaine de la vision artificielle afin de résoudre le problème de la reconnaissance du visage humain. Le recours à des eigenfaces pour la reconnaissance a été développé par Sirovich et Kirby (1987) et utilisé par Matthew Turk et Alex Pentland pour la classification de visages. Cette méthode est considérée comme le premier exemple réussi de technologie de reconnaissance faciale.