Linear equation over a ringIn algebra, linear equations and systems of linear equations over a field are widely studied. "Over a field" means that the coefficients of the equations and the solutions that one is looking for belong to a given field, commonly the real or the complex numbers. This article is devoted to the same problems where "field" is replaced by "commutative ring", or, typically "Noetherian integral domain". In the case of a single equation, the problem splits in two parts.
Statistical parameterIn statistics, as opposed to its general use in mathematics, a parameter is any measured quantity of a statistical population that summarises or describes an aspect of the population, such as a mean or a standard deviation. If a population exactly follows a known and defined distribution, for example the normal distribution, then a small set of parameters can be measured which completely describes the population, and can be considered to define a probability distribution for the purposes of extracting samples from this population.
Quantum algorithm for linear systems of equationsThe quantum algorithm for linear systems of equations, also called HHL algorithm, designed by Aram Harrow, Avinatan Hassidim, and Seth Lloyd, is a quantum algorithm published in 2008 for solving linear systems. The algorithm estimates the result of a scalar measurement on the solution vector to a given linear system of equations. The algorithm is one of the main fundamental algorithms expected to provide a speedup over their classical counterparts, along with Shor's factoring algorithm, Grover's search algorithm, and the quantum fourier transform.
Équation différentielle linéaireUne équation différentielle linéaire est un cas particulier d'équation différentielle pour lequel on peut appliquer des procédés de superposition de solutions, et exploiter des résultats d'algèbre linéaire. De nombreuses équations différentielles de la physique vérifient la propriété de linéarité. De plus, les équations différentielles linéaires apparaissent naturellement en perturbant une équation différentielle (non linéaire) autour d'une de ses solutions.
Norme matricielleEn mathématiques, une norme matricielle est un cas particulier de norme vectorielle, sur un espace de matrices. Dans ce qui suit, K désigne le corps des réels ou des complexes. Certains auteurs définissent une norme matricielle comme étant simplement une norme sur un espace vectoriel M(K) de matrices à m lignes et n colonnes à coefficients dans K. Pour d'autres, une norme matricielle est seulement définie sur une algèbre M(K) de matrices carrées et est une norme d'algèbre, c'est-à-dire qu'elle est de plus sous-multiplicative.
Matrice diagonaleEn algèbre linéaire, une matrice diagonale est une matrice carrée dont les coefficients en dehors de la diagonale principale sont nuls. Les coefficients de la diagonale peuvent être ou ne pas être nuls. Une matrice diagonale est une matrice qui correspond à la représentation d'un endomorphisme diagonalisable dans une base de vecteurs propres. La matrice d'un endomorphisme diagonalisable est semblable à une matrice diagonale. Toute matrice diagonale est symétrique, normale et triangulaire.
Maximum a posterioriL'estimateur du maximum a posteriori (MAP), tout comme la méthode du maximum de vraisemblance, est une méthode pouvant être utilisée afin d'estimer un certain nombre de paramètres inconnus, comme les paramètres d'une densité de probabilité, reliés à un échantillon donné. Cette méthode est très liée au maximum de vraisemblance mais en diffère toutefois par la possibilité de prendre en compte un a priori non uniforme sur les paramètres à estimer.
Théorie de l'estimationEn statistique, la théorie de l'estimation s'intéresse à l'estimation de paramètres à partir de données empiriques mesurées ayant une composante aléatoire. Les paramètres décrivent un phénomène physique sous-jacent tel que sa valeur affecte la distribution des données mesurées. Un estimateur essaie d'approcher les paramètres inconnus à partir des mesures.
Maximum de vraisemblanceEn statistique, l'estimateur du maximum de vraisemblance est un estimateur statistique utilisé pour inférer les paramètres de la loi de probabilité d'un échantillon donné en recherchant les valeurs des paramètres maximisant la fonction de vraisemblance. Cette méthode a été développée par le statisticien Ronald Aylmer Fisher en 1922. Soient neuf tirages aléatoires x1, ..., x9 suivant une même loi ; les valeurs tirées sont représentées sur les diagrammes ci-dessous par des traits verticaux pointillés.
Numerical methods for ordinary differential equationsNumerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term can also refer to the computation of integrals. Many differential equations cannot be solved exactly. For practical purposes, however – such as in engineering – a numeric approximation to the solution is often sufficient. The algorithms studied here can be used to compute such an approximation.