Courbe fermée de type tempsDans une variété lorentzienne de la géométrie différentielle, on appelle , courbe de genre temps fermée ou courbe temporelle fermée (closed timelike curve, ou en abrégé CTC, en anglais) la ligne d'univers d'une particule matérielle fermée dans l'espace-temps, c'est-à-dire capable de retourner au même point et à son instant de départ. a évoqué cette possibilité en 1937 et Kurt Gödel en 1949. Si l’existence des CTC était prouvée, cela pourrait au moins impliquer la possibilité théorique de construire une machine à voyager dans le temps, ainsi qu’une reformulation du paradoxe du grand-père.
Composantes d'un vecteurvignette|Composantes d'un vecteur dans un espace géométrique à trois dimensions, x, y et z. Dans le cas du concept géométrique classique de vecteur, il existe une identification complète entre ses « composantes » et les « coordonnées » qui le représentent. Cependant, il existe d'autres types d'espaces vectoriels (comme, par exemple, l'ensemble des polynômes d'ordre n), dans lesquels le concept de coordonnée n'a pas la généralité de l'idée de composante.
Aether theoriesIn physics, aether theories (also known as ether theories) propose the existence of a medium, a space-filling substance or field as a transmission medium for the propagation of electromagnetic or gravitational forces. "Since the development of special relativity, theories using a substantial aether fell out of use in modern physics, and are now replaced by more abstract models." This early modern aether has little in common with the aether of classical elements from which the name was borrowed.
AutomorphismeUn automorphisme est un isomorphisme d'un objet mathématique X dans lui-même. Le plus souvent, c'est une bijection de X dans X qui préserve la « structure » de X. On peut le voir comme une symétrie de X. Les automorphismes de X forment un groupe. La définition abstraite d'un automorphisme est la suivante : c'est un endomorphisme qui est en même temps un isomorphisme. Autrement dit, c'est un morphisme d'un objet X d'une catégorie donnée dans lui-même, qui est également un isomorphisme.
Figure isotoxaleEn géométrie, un polytope (un polygone, un polyèdre ou un pavage, par exemple) est isotoxal si son groupe de symétrie agit transitivement sur ses côtés. Informellement, cela veut dire qu'il y a un seul type de côté dans cet objet : pour deux côtés de l'objet, il y a une translation, une rotation et/ou une réflexion qui transforme un côté en l'autre, tout en laissant la région occupée par l'objet inchangée. Le terme isotoxal est dérivé du Grec τοξον qui veut dire arc.
Théorème de Burnside (groupe résoluble)En mathématiques, le théorème de Burnside appartient à la théorie des groupes finis. Son énoncé est : Il est nommé en l'honneur de William Burnside, qui l'a démontré en 1904, à l'aide de la théorie des représentations d'un groupe fini. À une époque où que tout groupe fini ayant pour ordre une puissance de nombre premier est résoluble, Georg Frobenius démontre en 1895 que tout groupe d'ordre pq, où p et q sont des nombres premiers, est résoluble. Ce résultat est étendu trois ans plus tard par Camille Jordan aux groupes d'ordre pq.