Codes de parité à faible densitéDans la théorie de l'information, un contrôle de parité de faible densité LDPC est un code linéaire correcteur d'erreur, permettant la transmission d'information sur un canal de transmission bruité. LDPC est construit en utilisant un graphe biparti clairsemé. Les codes LDPC ont une capacité approchant la limite théorique. À l'aide de techniques itératives de propagation d'information sur la donnée transmise et à décoder, les codes LDPC peuvent être décodés en un temps proportionnel à leur longueur de bloc.
Code de HammingUn code de Hamming est un code correcteur linéaire. Il permet la détection et la correction automatique d'une erreur si elle ne porte que sur une lettre du message. Un code de Hamming est parfait : pour une longueur de code donnée il n'existe pas d'autre code plus compact ayant la même capacité de correction. En ce sens son rendement est maximal. Il existe une famille de codes de Hamming ; le plus célèbre et le plus simple après le code de répétition binaire de dimension trois et de longueur un est sans doute le code binaire de paramètres [7,4,3].
Code linéaireEn mathématiques, plus précisément en théorie des codes, un code linéaire est un code correcteur ayant une certaine propriété de linéarité. Plus précisément, un tel code est structuré comme un sous-espace vectoriel d'un espace vectoriel de dimension finie sur un corps fini. L'espace vectoriel fini utilisé est souvent F2n le terme usuel est alors celui de code linéaire binaire. Il est décrit par trois paramètres [n, k, δ] . n décrit la dimension de l'espace qui le contient. Cette grandeur est appelée longueur du code.
Matrice de contrôleUne matrice de contrôle est un concept de théorie des codes utilisé dans le cas des codes correcteurs linéaires. Elle correspond à la matrice d'une application linéaire ayant pour noyau le code. La notion de matrice de contrôle possède à la fois un intérêt théorique dans le cadre de l'étude des codes correcteurs, par exemple pour offrir des critères sur la distance minimale du code ou une condition nécessaire et suffisante pour qu'un code soit parfait et un intérêt pratique pour un décodage efficace.
Entropie conditionnelleEn théorie de l'information, l'entropie conditionnelle décrit la quantité d'information nécessaire pour connaitre le comportement d'une variable aléatoire , lorsque l'on connait exactement une variable aléatoire . On note l'entropie conditionnelle de sachant . On dit aussi parfois entropie de conditionnée par . Comme les autres entropies, elle se mesure généralement en bits. On peut introduire l'entropie conditionnelle de plusieurs façons, soit directement à partir des probabilités conditionnelles, soit en passant par l'entropie conjointe.
Code d'effacementEn théorie de l'information, un code d'effacement est un code de correction d'erreur directe pour le canal binaire d'effacement qui transforme un message composé de symboles en un message plus long composé de symboles tel que le message original peut être retrouvé à partir d'un sous-ensemble de ces symboles. La fraction est appelé « débit du code ». La fraction , où représente le nombre de symboles requis pour restaurer le message est appelée efficacité de la réception.
Matrice génératriceUne matrice génératrice est un concept de théorie des codes utilisé dans le cas des codes linéaires. Elle correspond à la matrice de l'application linéaire de E l'espace vectoriel des messages à communiquer dans F, l'espace vectoriel contenant les codes transmis. La notion de matrice génératrice possède à la fois un intérêt théorique dans le cadre de l'étude des codes correcteurs, par exemple pour définir la notion de code systématique, et un intérêt pratique pour une implémentation efficace.
Entropie de ShannonEn théorie de l'information, l'entropie de Shannon, ou plus simplement entropie, est une fonction mathématique qui, intuitivement, correspond à la quantité d'information contenue ou délivrée par une source d'information. Cette source peut être un texte écrit dans une langue donnée, un signal électrique ou encore un fichier informatique quelconque (suite d'octets). Elle a été introduite par Claude Shannon. Du point de vue d'un récepteur, plus la source émet d'informations différentes, plus l'entropie (ou incertitude sur ce que la source émet) est grande.
Entropie de RényiL'entropie de Rényi, due à Alfréd Rényi, est une fonction mathématique qui correspond à la quantité d'information contenue dans la probabilité de collision d'une variable aléatoire. Étant donnés une variable aléatoire discrète à valeurs possibles , ainsi qu'un paramètre réel strictement positif et différent de 1, l' entropie de Rényi d'ordre de est définie par la formule : L'entropie de Rényi généralise d'autres acceptions de la notion d'entropie, qui correspondent chacune à des valeurs particulières de .
Code correcteurvignette|Pour nettoyer les erreurs de transmission introduites par l'atmosphère terrestre (à gauche), les scientifiques de Goddard ont appliqué la correction d'erreur Reed-Solomon (à droite), qui est couramment utilisée dans les CD et DVD. Les erreurs typiques incluent les pixels manquants (blanc) et les faux signaux (noir). La bande blanche indique une brève période pendant laquelle la transmission a été interrompue.