Multiscale diffusion method for simulations of long-time defect evolution with application to dislocation climb
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Evidence of composition fluctuations around threading dislocations at scales ranging from atomic distances to tens of nanometers is provided by z-contrast imaging, strain measurement, and energy dispersive x-ray spectroscopy in AlxIn1-x N/GaN heterostructu ...
Helium atoms are known to have a significant impact on materials used in fission and fusion reactors. In particular, the presence of helium atoms can change the mechanical properties and degrade the lifetime of reactors. In order to develop the helium-resi ...
Impurities are known to have a significant impact on materials properties. In particular, the presence of impurities can change mechanical properties and stabilize the microstructure by reducing grain growth and recrystallization processes. In the past ato ...
Degradation of mechanical properties due to nanometric irradiation induced defects is one of the challenging issues in designing ferritic materials for future nuclear fusion reactors. Various types of defects, namely dislocation loops, voids, He bubbles an ...
The successive stress-relaxation (SSR) experiment is a well- known technique that is mainly used to study different aspects of the plastic deformation phenomena. The technique has been described extensively elsewhere [L.P. Kubin, Philos. Mag. 30 (1974) 705 ...
Polycrystalline materials with crystallite diameters below hundred nanometer exhibit extraordinary strength which goes along with a decrease in ductility. In order to tailor tough materials, which combine strength and ductility, the underlying deformation ...
Non-polar a-GaN films grown on r-sapphire by hydride vapor phase epitaxy (HVPE) are studied using transmission electron microscopy (TEM). Despite the small lattice mismatch in a-GaN ([1 0 (1) over bar 0] similar to 1.1% and [0 00 1] similar to 16%), high d ...
Materials consisting of grains or crystallites with sizes below a hundred nanometers have exhibited unique physical and mechanical properties in comparison to their coarse-grained counterparts. As a result, considerable effort has been put into uncovering ...
Multiscale modeling, including molecular dynamics (MD) and discrete dislocation dynamics (DDD) methods, appears as a significant tool for the description of plasticity and mechanical properties of materials. This research concerns the influence of irradiatio ...
Using a spherical aberration (Cs)-corrected scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy (EELS), we Investigated a 6 degrees low-angle [001] tilt grain boundary in SrTiO(3). The enhanced spatial resolution of the a ...