Microscope à force atomiquethumb|350px|Le premier microscope à force atomique du monde, au musée de la Science de Londres. Le microscope à force atomique (AFM pour atomic force microscope) est un type de microscope à sonde locale permettant de visualiser la topographie de la surface d'un échantillon. Inventé en 1985, par Gerd Binnig, Calvin Quate et Christoph Gerber, ce type de microscopie repose essentiellement sur l'analyse d'un objet point par point au moyen d'un balayage via une sonde locale, assimilable à une pointe effilée.
Spectroscopie infrarougethumb|Un spectromètre infrarouge. La spectroscopie infrarouge (parfois désignée comme spectroscopie IR) est une classe de spectroscopie qui traite de la région infrarouge du spectre électromagnétique. Elle recouvre une large gamme de techniques, la plus commune étant un type de spectroscopie d'absorption. Comme pour toutes les techniques de spectroscopie, elle peut être employée pour l'identification de composés ou pour déterminer la composition d'un échantillon.
Condition aux limites de DirichletEn mathématiques, une condition aux limites de Dirichlet (nommée d’après Johann Dirichlet) est imposée à une équation différentielle ou à une équation aux dérivées partielles lorsque l'on spécifie les valeurs que la solution doit vérifier sur les frontières/limites du domaine. Pour une équation différentielle, par exemple : la condition aux limites de Dirichlet sur l'intervalle s'exprime par : où et sont deux nombres donnés.
Condition aux limites de RobinEn mathématique, une condition aux limites de Robin (ou de troisième type) est un type de condition aux limites portant le nom du mathématicien français Victor Gustave Robin (1855-1897), qui a travaillé dans le domaine de la thermodynamique. Elle est également appelée condition aux limites de Fourier. Imposée à une équation différentielle ordinaire ou à une équation aux dérivées partielles, il s'agit d'une relation linéaire entre les valeurs de la fonction et les valeurs de la dérivée de la fonction sur le bord du domaine.
Équation aux dérivées partiellesEn mathématiques, plus précisément en calcul différentiel, une équation aux dérivées partielles (parfois appelée équation différentielle partielle et abrégée en EDP) est une équation différentielle dont les solutions sont les fonctions inconnues dépendant de plusieurs variables vérifiant certaines conditions concernant leurs dérivées partielles. Une EDP a souvent de très nombreuses solutions, les conditions étant moins strictes que dans le cas d'une équation différentielle ordinaire à une seule variable ; les problèmes comportent souvent des conditions aux limites qui restreignent l'ensemble des solutions.
Problème aux limitesEn analyse, un problème aux limites est constitué d'une équation différentielle (ou plus généralement aux dérivées partielles) dont on recherche une solution prenant de plus des valeurs imposées en des limites du domaine de résolution. Contrairement au problème analogue dit de Cauchy, où une ou plusieurs conditions en un même endroit sont imposées (typiquement la valeur de la solution et de ses dérivées successives en un point), auquel le théorème de Cauchy-Lipschitz apporte une réponse générale, les problèmes aux limites sont souvent des problèmes difficiles, et dont la résolution peut à chaque fois conduire à des considérations différentes.
Condition aux limites de NeumannEn mathématiques, une condition aux limites de Neumann (nommée d'après Carl Neumann) est imposée à une équation différentielle ou à une équation aux dérivées partielles lorsque l'on spécifie les valeurs des dérivées que la solution doit vérifier sur les frontières/limites du domaine. Pour une équation différentielle, par exemple : la condition aux limites de Neumann sur l'intervalle s'exprime par : où et sont deux nombres donnés.
Modulation d'amplitudeLa modulation d'amplitude ou MA (AM en anglais) est une technique utilisée pour moduler un signal. Elle consiste en la multiplication du signal à moduler par un signal de fréquence moins élevée. La modulation d'amplitude consiste à faire varier l'amplitude d'un signal de fréquence élevée, le signal porteur, en fonction d'un signal de plus basse fréquence, le signal modulant. Ce dernier est celui qui contient l'information à transmettre (voix, par exemple, recueillie par un microphone).
Cauchy boundary conditionIn mathematics, a Cauchy (koʃi) boundary condition augments an ordinary differential equation or a partial differential equation with conditions that the solution must satisfy on the boundary; ideally so as to ensure that a unique solution exists. A Cauchy boundary condition specifies both the function value and normal derivative on the boundary of the domain. This corresponds to imposing both a Dirichlet and a Neumann boundary condition. It is named after the prolific 19th-century French mathematical analyst Augustin-Louis Cauchy.
Basse fréquenceLa bande radioélectrique des « basses fréquences » ou LF (low frequency) désignée aussi par « grandes ondes » (GO) ou « ondes longues (OL) » par opposition et en cohérence de désignation avec les « ondes moyennes » et « ondes courtes » désigne la partie du spectre radioélectrique de fréquence modulée comprise entre et (longueur d'onde de 1 à ). L'appellation « BF » est également employée notamment en acoustique et en audio-électronique pour désigner la gamme des signaux de fréquence ou spectre sonore de à .