Opérateur différentielEn mathématiques, et plus précisément en analyse, un opérateur différentiel est un opérateur agissant sur des fonctions différentiables. Lorsque la fonction est à une seule variable, l'opérateur différentiel est construit à partir des dérivées ordinaires. Lorsque la fonction est à plusieurs variables, l'opérateur différentiel est construit à partir des dérivées partielles. Un opérateur différentiel agissant sur deux fonctions est appelé opérateur bidifférentiel.
Negative-index metamaterialNegative-index metamaterial or negative-index material (NIM) is a metamaterial whose refractive index for an electromagnetic wave has a negative value over some frequency range. NIMs are constructed of periodic basic parts called unit cells, which are usually significantly smaller than the wavelength of the externally applied electromagnetic radiation. The unit cells of the first experimentally investigated NIMs were constructed from circuit board material, or in other words, wires and dielectrics.
Équation de Helmholtzvignette|Application de l'équation de Helmholtz. Léquation de Helmholtz (d'après le physicien Hermann von Helmholtz) est une équation aux dérivées partielles elliptique qui apparaît lorsque l'on cherche des solutions harmoniques de l'équation de propagation des ondes de D'Alembert, appelées « modes propres », sur un domaine : Pour que le problème mathématique soit bien posé, il faut spécifier une condition aux limites sur le bord du domaine, par exemple : une condition de Dirichlet, une condition de Neumann, un mélange des deux précédentes etc.
Opérateur laplacienL'opérateur laplacien, ou simplement le laplacien, est l'opérateur différentiel défini par l'application de l'opérateur gradient suivie de l'application de l'opérateur divergence : Intuitivement, il combine et relie la description statique d'un champ (décrit par son gradient) aux effets dynamiques (la divergence) de ce champ dans l'espace et le temps. C'est l'exemple le plus simple et le plus répandu d'opérateur elliptique.
MétamatériauEn physique, en électromagnétisme, le terme métamatériau désigne un matériau composite artificiel qui présente des propriétés électromagnétiques qu'on ne retrouve pas dans un matériau naturel. Il s'agit en général de structures périodiques, diélectriques ou métalliques, qui se comportent comme un matériau homogène n'existant pas à l'état naturel. Il existe plusieurs types de métamatériaux en électromagnétisme, les plus connus étant ceux susceptibles de présenter à la fois une permittivité et une perméabilité négatives.
Équation intégraleUne équation intégrale est une équation où la fonction inconnue est à l'intérieur d'une intégrale. Elles sont importantes dans plusieurs domaines physiques. Les équations de Maxwell sont probablement leurs plus célèbres représentantes. Elles apparaissent dans des problèmes des transferts d'énergie radiative et des problèmes d'oscillations d'une corde, d'une membrane ou d'un axe. Les problèmes d'oscillation peuvent aussi être résolus à l'aide d'équations différentielles.
Metamaterial antennaMetamaterial antennas are a class of antennas which use metamaterials to increase performance of miniaturized (electrically small) antenna systems. Their purpose, as with any electromagnetic antenna, is to launch energy into free space. However, this class of antenna incorporates metamaterials, which are materials engineered with novel, often microscopic, structures to produce unusual physical properties. Antenna designs incorporating metamaterials can step-up the antenna's radiated power.
Intégration (mathématiques)En mathématiques, l'intégration ou calcul intégral est l'une des deux branches du calcul infinitésimal, l'autre étant le calcul différentiel. Les intégrales sont utilisées dans de multiples disciplines scientifiques notamment en physique pour des opérations de mesure de grandeurs (longueur d'une courbe, aire, volume, flux) ou en probabilités. Ses utilités pluridisciplinaires en font un outil scientifique fondamental. C'est la raison pour laquelle l'intégration est souvent abordée dès l'enseignement secondaire.
History of metamaterialsThe history of metamaterials begins with artificial dielectrics in microwave engineering as it developed just after World War II. Yet, there are seminal explorations of artificial materials for manipulating electromagnetic waves at the end of the 19th century. Hence, the history of metamaterials is essentially a history of developing certain types of manufactured materials, which interact at radio frequency, microwave, and later optical frequencies.
Tenseur des contraintesLe tenseur des contraintes est un tenseur d'ordre 2 utilisé en mécanique des milieux continus pour caractériser l'état de contrainte, c'est-à-dire les efforts intérieurs mis en jeu entre les portions déformées d'un milieu. Le terme a été introduit par Cauchy vers 1822. Comme les efforts intérieurs sont définis pour chaque surface coupant le milieu (on parle d'ailleurs également d'efforts surfaciques), le tenseur est défini localement, en chaque point du solide. L'état de contrainte du solide est donc représenté par un champ tensoriel.