Réseau (géométrie)En mathématiques, un réseau d'un espace (vectoriel) euclidien est un sous-groupe discret de l’espace, de rang fini n. Par exemple, les vecteurs de Rn à coordonnées entières dans une base forment un réseau de Rn. Cette notion permet de décrire mathématiquement des maillages, comme celui correspondant à la figure 1. thumb|Fig. 1. Un réseau est un ensemble discret disposé dans un espace vectoriel réel de dimension finie de manière régulière, au sens où la différence de deux éléments du réseau est encore élément du réseau.
Théorie conforme des champsUne théorie conforme des champs ou théorie conforme (en anglais, conformal field theory ou CFT) est une variété particulière de théorie quantique des champs admettant le comme groupe de symétrie. Ce type de théorie est particulièrement étudié lorsque l'espace-temps y est bi-dimensionnel car en ce cas le groupe conforme est de dimension infinie et bien souvent la théorie est alors exactement soluble.
Représentation fondamentaleIn representation theory of Lie groups and Lie algebras, a fundamental representation is an irreducible finite-dimensional representation of a semisimple Lie group or Lie algebra whose highest weight is a fundamental weight. For example, the defining module of a classical Lie group is a fundamental representation. Any finite-dimensional irreducible representation of a semisimple Lie group or Lie algebra can be constructed from the fundamental representations by a procedure due to Élie Cartan.
Théorie de LiouvilleIn physics, Liouville field theory (or simply Liouville theory) is a two-dimensional conformal field theory whose classical equation of motion is a generalization of Liouville's equation. Liouville theory is defined for all complex values of the central charge of its Virasoro symmetry algebra, but it is unitary only if and its classical limit is Although it is an interacting theory with a continuous spectrum, Liouville theory has been solved. In particular, its three-point function on the sphere has been determined analytically.
Théorie quantique des champsvignette|296x296px|Ce diagramme de Feynman représente l'annihilation d'un électron et d'un positron, qui produit un photon (représenté par une ligne ondulée bleue). Ce photon se décompose en une paire quark-antiquark, puis l'antiquark émet un gluon (représenté par la courbe verte). Ce type de diagramme permet à la fois de représenter approximativement les processus physiques mais également de calculer précisément leurs propriétés, comme la section efficace de collision.
Semisimple Lie algebraIn mathematics, a Lie algebra is semisimple if it is a direct sum of simple Lie algebras. (A simple Lie algebra is a non-abelian Lie algebra without any non-zero proper ideals). Throughout the article, unless otherwise stated, a Lie algebra is a finite-dimensional Lie algebra over a field of characteristic 0. For such a Lie algebra , if nonzero, the following conditions are equivalent: is semisimple; the Killing form, κ(x,y) = tr(ad(x)ad(y)), is non-degenerate; has no non-zero abelian ideals; has no non-zero solvable ideals; the radical (maximal solvable ideal) of is zero.
Représentation d'algèbre de LieEn mathématiques, une représentation d'une algèbre de Lie est une façon d'écrire cette algèbre comme une algèbre de matrices, ou plus généralement d'endomorphismes d'un espace vectoriel, avec le crochet de Lie donné par le commutateur. Algèbre de Lie Soit K un corps commutatif de caractéristique différente de 2. Une algèbre de Lie sur K est un espace vectoriel muni d'une application bilinéaire de dans qui vérifie les propriétés suivantes : Tout espace vectoriel peut être muni d'une structure d'algèbre de Lie, en posant .
Algèbre de LieEn mathématiques, une algèbre de Lie, nommée en l'honneur du mathématicien Sophus Lie, est un espace vectoriel qui est muni d'un crochet de Lie, c'est-à-dire d'une loi de composition interne bilinéaire, alternée, et qui vérifie la relation de Jacobi. Une algèbre de Lie est un cas particulier d'algèbre sur un corps. Soit K un corps commutatif. Une algèbre de Lie sur K est un espace vectoriel sur K muni d'une application bilinéaire de dans qui vérifie les propriétés suivantes : Le produit est appelé crochet de Lie (ou simplement crochet) de et .
Tableau de YoungLes tableaux de Young sont des objets combinatoires qui jouent un rôle important en théorie des représentations des groupes et dans la théorie des fonctions symétriques. Ils permettent en particulier de construire les représentations irréductibles du groupe symétrique, ainsi que celles du groupe général linéaire sur le corps des complexes. Les tableaux de Young ont été introduits par Alfred Young, un mathématicien de l'université de Cambridge, en 1900. Ils ont été appliqués à l'étude du groupe symétrique par Georg Frobenius en 1903.
Réseau de BravaisEn cristallographie, un réseau de Bravais est une distribution régulière de points – appelés nœuds – dans l’espace qui représente la périodicité de la distribution atomique d’un cristal. Les nœuds peuvent être imaginés comme les sommets des mailles, c'est-à-dire des portions de l'espace dans lesquelles la structure cristalline peut être divisée. La structure est alors reconstruite par simple translation de la maille.