Loi de Hall-PetchIn materials science, grain-boundary strengthening (or Hall–Petch strengthening) is a method of strengthening materials by changing their average crystallite (grain) size. It is based on the observation that grain boundaries are insurmountable borders for dislocations and that the number of dislocations within a grain has an effect on how stress builds up in the adjacent grain, which will eventually activate dislocation sources and thus enabling deformation in the neighbouring grain as well.
Contrainte (mécanique)vignette|Lignes de tension dans un rapporteur en plastique vu sous une lumière polarisée grâce à la photoélasticité. En mécanique des milieux continus, et en résistance des matériaux en règle générale, la contrainte mécanique (autrefois appelée tension ou « fatigue élastique ») décrit les forces que les particules élémentaires d'un milieu exercent les unes sur les autres par unité de surface. Ce bilan des forces locales est conceptualisé par un tenseur d'ordre deux : le tenseur des contraintes.
Solid solution strengtheningIn metallurgy, solid solution strengthening is a type of alloying that can be used to improve the strength of a pure metal. The technique works by adding atoms of one element (the alloying element) to the crystalline lattice of another element (the base metal), forming a solid solution. The local nonuniformity in the lattice due to the alloying element makes plastic deformation more difficult by impeding dislocation motion through stress fields. In contrast, alloying beyond the solubility limit can form a second phase, leading to strengthening via other mechanisms (e.
Tenseur des contraintesLe tenseur des contraintes est un tenseur d'ordre 2 utilisé en mécanique des milieux continus pour caractériser l'état de contrainte, c'est-à-dire les efforts intérieurs mis en jeu entre les portions déformées d'un milieu. Le terme a été introduit par Cauchy vers 1822. Comme les efforts intérieurs sont définis pour chaque surface coupant le milieu (on parle d'ailleurs également d'efforts surfaciques), le tenseur est défini localement, en chaque point du solide. L'état de contrainte du solide est donc représenté par un champ tensoriel.
Compacité (cristallographie)En cristallographie, la compacité (ou taux de remplissage) d'un édifice cristallin, dans le modèle des sphères dures, est la fraction volumique des sphères. C'est le taux réel d'occupation de l'espace. On fait généralement le calcul dans une maille (conventionnelle) : où : est la compacité, le volume occupé par les sphères de la maille (pour les sphères dont le centre est situé à la périphérie de la maille, on ne compte que la partie de la sphère incluse dans la maille), le volume de la maille.
Stress–strain analysisStress–strain analysis (or stress analysis) is an engineering discipline that uses many methods to determine the stresses and strains in materials and structures subjected to forces. In continuum mechanics, stress is a physical quantity that expresses the internal forces that neighboring particles of a continuous material exert on each other, while strain is the measure of the deformation of the material. In simple terms we can define stress as the force of resistance per unit area, offered by a body against deformation.
Cylinder stressIn mechanics, a cylinder stress is a stress distribution with rotational symmetry; that is, which remains unchanged if the stressed object is rotated about some fixed axis. Cylinder stress patterns include: circumferential stress, or hoop stress, a normal stress in the tangential (azimuth) direction. axial stress, a normal stress parallel to the axis of cylindrical symmetry. radial stress, a normal stress in directions coplanar with but perpendicular to the symmetry axis.
Structure cristallineLa structure cristalline (ou structure d'un cristal) donne l'arrangement des atomes dans un cristal. Ces atomes se répètent périodiquement dans l'espace sous l'action des opérations de symétrie du groupe d'espace et forment ainsi la structure cristalline. Cette structure est un concept fondamental pour de nombreux domaines de la science et de la technologie. Elle est complètement décrite par les paramètres de maille du cristal, son réseau de Bravais, son groupe d'espace et la position des atomes dans l'unité asymétrique la maille.
PyramideEn géométrie, une pyramide (du grec ancien ) à n côtés est un polyèdre à n + 1 faces, formé en reliant une base polygonale de n côtés à son sommet ou sommet opposé à la base (également appelé apex), par n faces triangulaires (n ≥ 3). Lorsque cela n'est pas précisé, la base est supposée carrée. Pour une pyramide triangulaire chaque face peut servir de base, avec le sommet opposé pour apex. Le tétraèdre régulier, un des solides de Platon, est une pyramide triangulaire.
Pyramide à base carréeEn géométrie, une pyramide à base carrée est une pyramide avec une base carrée et quatre faces latérales triangulaires. Si les quatre faces triangulaires sont équilatérales, alors la pyramide est un solide de Johnson (J1), et peut être pensée comme la moitié d'un octaèdre. D'autres pyramides carrées ne sont pas semblables à ce solide de Johnson ; la pyramide de Khéops, par exemple, possède quatre faces triangulaires isocèles non équilatérales.