Extension normaleEn mathématiques, une extension L d'un corps K est dite normale ou quasi-galoisienne si c'est une extension algébrique et si tout morphisme de corps de L dans un corps le contenant, induisant l'identité sur K, a son image contenue dans L. De façon équivalente, l'extension L/K est normale si elle est algébrique et si tout conjugué d'un élément de L appartient encore à L. Cette propriété est utilisée pour définir une extension de Galois : c'est une extension algébrique séparable et normale.
Extension de GaloisEn mathématiques, une extension de Galois (parfois nommée extension galoisienne) est une extension normale séparable. L'ensemble des automorphismes de l'extension possède une structure de groupe appelée groupe de Galois. Cette structure de groupe caractérise l'extension, ainsi que ses sous-corps. Les extensions de Galois sont des structures largement utilisées pour la démonstration de théorèmes en théorie algébrique des nombres, comme le dernier théorème de Fermat, ou en théorie de Galois pure, comme le théorème d'Abel-Ruffini.
Code de Hamming (7,4)En théorie des codes, le Code de Hamming (7,4) est un code correcteur linéaire binaire de la famille des codes de Hamming. À travers un message de sept bits, il transfère quatre bits de données et trois bits de parité. Il permet la correction d'un bit erroné. Autrement dit, si, sur les sept bits transmis, l'un d'eux au plus est altéré (un « zéro » devient un « un » ou l'inverse), alors il existe un algorithme permettant de corriger l'erreur. Il fut introduit par Richard Hamming (1915-1998) en 1950 dans le cadre de son travail pour les laboratoires Bell.
Extension abélienneEn algèbre générale, plus précisément en théorie de Galois, une extension abélienne est une extension de Galois dont le groupe de Galois est abélien. Lorsque ce groupe est cyclique, l'extension est dite cyclique. Toute extension finie d'un corps fini est une extension cyclique. L'étude de la théorie des corps de classes décrit de façon détaillée toutes les extensions abéliennes dans le cas des corps de nombres, et des corps de fonctions de courbes algébriques sur des corps finis, ainsi que dans le cas des corps locaux (Théorie du corps de classes local).
Code de GolayEn théorie des codes, un code de Golay est un code correcteur d'erreurs pouvant être binaire ou tertiaire, nommé en l'honneur de son inventeur, Marcel Golay. Il y a deux types de codes de Golay binaire. Le code binaire étendu de Golay encode 12 bits de données dans un mot de code de 24 bits de long de telle manière que n'importe quelle erreur sur trois bits puisse être corrigée et n'importe quelle erreur sur quatre bits puisse être détectée.
Dual codeIn coding theory, the dual code of a linear code is the linear code defined by where is a scalar product. In linear algebra terms, the dual code is the annihilator of C with respect to the bilinear form . The dimension of C and its dual always add up to the length n: A generator matrix for the dual code is the parity-check matrix for the original code and vice versa. The dual of the dual code is always the original code. A self-dual code is one which is its own dual. This implies that n is even and dim C = n/2.
Extension simpleEn mathématiques et plus précisément en algèbre, dans le cadre de la théorie des corps commutatifs, une extension L d'un corps K est dite simple s'il existe un élément α de L tel que L est égal à K(α). L'extension simple K(α) est finie si et seulement si α est algébrique sur K. La seule extension simple infinie de K (à isomorphisme près) est le corps de fractions rationnelles K(X). Le théorème de l'élément primitif assure que toute extension séparable finie est simple.
Expander codeIn coding theory, expander codes form a class of error-correcting codes that are constructed from bipartite expander graphs. Along with Justesen codes, expander codes are of particular interest since they have a constant positive rate, a constant positive relative distance, and a constant alphabet size. In fact, the alphabet contains only two elements, so expander codes belong to the class of binary codes. Furthermore, expander codes can be both encoded and decoded in time proportional to the block length of the code.
Opération binaireLes opérations en codage binaire sont traitées à l'article Fonction logique. En mathématiques, une opération binaire est une opération à deux arguments ou opérandes. C'est le cas notamment des lois de composition interne sur un ensemble, telle que l'addition des entiers ou la composition de fonctions. Mais une opération partiellement définie comme la division ou la puissance peut également être considérée comme une opération binaire.
Matrice binaireUne matrice binaire est une matrice dont les coefficients sont soit 0, soit 1. En général ces coefficients sont les nombres de l'algèbre de Boole dans laquelle on appelle B l'ensemble constitué de deux éléments appelés valeurs de vérité {VRAI, FAUX}. Cet ensemble est aussi noté B = {1, 0} ou B = {⊤, ⊥}. On privilégie souvent la notation B = {1, 0}. Quand on programme des algorithmes utilisant ces matrices, la notation {VRAI, FAUX} peut coexister avec la notation {1, 0} car de nombreux langages acceptent ce polymorphisme.