Régression (statistiques)En mathématiques, la régression recouvre plusieurs méthodes d’analyse statistique permettant d’approcher une variable à partir d’autres qui lui sont corrélées. Par extension, le terme est aussi utilisé pour certaines méthodes d’ajustement de courbe. En apprentissage automatique, on distingue les problèmes de régression des problèmes de classification. Ainsi, on considère que les problèmes de prédiction d'une variable quantitative sont des problèmes de régression tandis que les problèmes de prédiction d'une variable qualitative sont des problèmes de classification.
Régression quantileLes régressions quantiles sont des outils statistiques dont l’objet est de décrire l’impact de variables explicatives sur une variable d’intérêt. Elles permettent une description plus riche que les régressions linéaires classiques, puisqu’elles s’intéressent à l’ensemble de la distribution conditionnelle de la variable d’intérêt et non seulement à la moyenne de celle-ci. En outre, elles peuvent être plus adaptées pour certains types de données (variables censurées ou tronquées, présence de valeurs extrêmes, modèles non linéaires.
Régression linéaireEn statistiques, en économétrie et en apprentissage automatique, un modèle de régression linéaire est un modèle de régression qui cherche à établir une relation linéaire entre une variable, dite expliquée, et une ou plusieurs variables, dites explicatives. On parle aussi de modèle linéaire ou de modèle de régression linéaire. Parmi les modèles de régression linéaire, le plus simple est l'ajustement affine. Celui-ci consiste à rechercher la droite permettant d'expliquer le comportement d'une variable statistique y comme étant une fonction affine d'une autre variable statistique x.
Régression non linéaireUne régression non linéaire consiste à ajuster un modèle, en général non linéaire, y = ƒa1, ..., am(x) pour un ensemble de valeurs (xi, yi)1 ≤ i ≤ n. Les variables xi et yi peuvent être des scalaires ou des vecteurs. Par « ajuster », il faut comprendre : déterminer les paramètres de la loi, (a1, ..., am), afin de minimiser S = ||ri||, avec : ri = yi - ƒa1, ..., am(xi). ||...|| est une norme. On utilise en général la norme euclidienne, ou norme l2 ; on parle alors de méthode des moindres carrés.
Classement automatiquevignette|La fonction 1-x^2-2exp(-100x^2) (rouge) et les valeurs déplacées par un bruit de 0,1*N(0,1). Le classement automatique ou classification supervisée est la catégorisation algorithmique d'objets. Elle consiste à attribuer une classe ou catégorie à chaque objet (ou individu) à classer, en se fondant sur des données statistiques. Elle fait couramment appel à l'apprentissage automatique et est largement utilisée en reconnaissance de formes. En français, le classement fait référence à l'action de classer donc de « ranger dans une classe ».
PropriétéLa propriété est la possession d'un bien meuble ou immeuble ou d'une production intellectuelle, reconnue et consacrée par une autorité (divine ou humaine), la société, la loi, la raison générale ou le consentement universel C'est selon Pierre-Joseph Proudhon une usucapion ou une usurpation. La Révolution française a exalté le droit de propriété : inviolable et sacrée, selon l'article 17 de la Déclaration des droits de l'homme et du citoyen de 1789.
Droit des biensLe droit des biens ou droits réels est branche du droit qui étudie les relations juridiques dont l'origine ou l'objet se rapporte aux biens ou choses. Le droit des biens s'intéresse aux relations entre personnes et biens. Les biens sont un ensemble qui comporte tant des choses matérielles (voiture) que des choses immatérielles (droit d'auteur), tant des choses meubles (action de société) que des choses immeubles (appartement). Les droits réels comprennent un certain nombre de principes fondamentaux issus de leur nature particulière.
Multinomial logistic regressionIn statistics, multinomial logistic regression is a classification method that generalizes logistic regression to multiclass problems, i.e. with more than two possible discrete outcomes. That is, it is a model that is used to predict the probabilities of the different possible outcomes of a categorically distributed dependent variable, given a set of independent variables (which may be real-valued, binary-valued, categorical-valued, etc.).
Propriété personnelleLa propriété personnelle (en anglais personal property) est un type de propriété hérité du droit romain qu'on retrouve aujourd'hui dans le système de droit anglais dit de Common law mais qui ne correspond à aucune classification française. La propriété personnelle porte sur des biens mobiliers corporels ou non, et se distingue de la « propriété réelle » (real property) qui porte sur l'immobilier. En droit romain, la propriété personnelle est appelée propriété mobilière (n'importe quelle chose qui peut être déplacée d'un endroit à un autre).
Least-angle regressionIn statistics, least-angle regression (LARS) is an algorithm for fitting linear regression models to high-dimensional data, developed by Bradley Efron, Trevor Hastie, Iain Johnstone and Robert Tibshirani. Suppose we expect a response variable to be determined by a linear combination of a subset of potential covariates. Then the LARS algorithm provides a means of producing an estimate of which variables to include, as well as their coefficients.