Chromosome (genetic algorithm)In genetic algorithms (GA), or more general, evolutionary algorithms (EA), a chromosome (also sometimes called a genotype) is a set of parameters which define a proposed solution of the problem that the evolutionary algorithm is trying to solve. The set of all solutions, also called individuals according to the biological model, is known as the population. The genome of an individual consists of one, more rarely of several, chromosomes and corresponds to the genetic representation of the task to be solved.
Algorithme de DijkstraEn théorie des graphes, l'algorithme de Dijkstra (prononcé ) sert à résoudre le problème du plus court chemin. Il permet, par exemple, de déterminer un plus court chemin pour se rendre d'une ville à une autre connaissant le réseau routier d'une région. Plus précisément, il calcule des plus courts chemins à partir d'une source vers tous les autres sommets dans un graphe orienté pondéré par des réels positifs. On peut aussi l'utiliser pour calculer un plus court chemin entre un sommet de départ et un sommet d'arrivée.
Traumatisme crânienLa notion de traumatisme crânien, ou traumatisme cranio-cérébral (TCC), couvre les traumatismes du neurocrâne (partie haute du crâne contenant le cerveau) et du cerveau. Les manifestations cliniques dépendent de l'importance de l'impact et des facteurs associés (âge, pathologies préexistantes autres, traumatismes associés). Par la situation anatomique de la tête, le traumatisme crânien est souvent associé à des traumatismes du rachis cervical (entorses, luxations, fractures), du visage (contusions, plaies, fractures maxillo-faciales) et oculaires.
Diviser pour régner (informatique)thumb|652x652px|Trois étapes (diviser, régner, combiner) illustrées avec l'algorithme du tri fusion En informatique, diviser pour régner (du latin , divide and conquer en anglais) est une technique algorithmique consistant à : Diviser : découper un problème initial en sous-problèmes ; Régner : résoudre les sous-problèmes (récursivement ou directement s'ils sont assez petits) ; Combiner : calculer une solution au problème initial à partir des solutions des sous-problèmes.
NumératieLa numératie est la capacité à utiliser, à appliquer, à interpréter, à communiquer, à créer et à critiquer des informations et des idées mathématiques de la vie réelle. C’est également la tendance d’un individu à réfléchir mathématiquement dans différentes situations professionnelles, personnelles, sociales et culturelles. Sa visée pragmatique favorise l’indépendance et l’autonomie. La numératie prend forme dans les dimensions cognitive, affective et motivationnelle d’un individu.
Crossover (genetic algorithm)In genetic algorithms and evolutionary computation, crossover, also called recombination, is a genetic operator used to combine the genetic information of two parents to generate new offspring. It is one way to stochastically generate new solutions from an existing population, and is analogous to the crossover that happens during sexual reproduction in biology. Solutions can also be generated by cloning an existing solution, which is analogous to asexual reproduction. Newly generated solutions may be mutated before being added to the population.
Équation différentielle stochastiqueUne équation différentielle stochastique (EDS) est une généralisation de la notion d'équation différentielle prenant en compte un terme de bruit blanc. Les EDS permettent de modéliser des trajectoires aléatoires, tels des cours de bourse ou les mouvements de particules soumises à des phénomènes de diffusion. Elles permettent aussi de traiter théoriquement ou numériquement des problèmes issus de la théorie des équations aux dérivées partielles.
Multilinear subspace learningMultilinear subspace learning is an approach for disentangling the causal factor of data formation and performing dimensionality reduction. The Dimensionality reduction can be performed on a data tensor that contains a collection of observations have been vectorized, or observations that are treated as matrices and concatenated into a data tensor. Here are some examples of data tensors whose observations are vectorized or whose observations are matrices concatenated into data tensor s (2D/3D), video sequences (3D/4D), and hyperspectral cubes (3D/4D).
Optimisation linéairethumb|upright=0.5|Optimisation linéaire dans un espace à deux dimensions (x1, x2). La fonction-coût fc est représentée par les lignes de niveau bleues à gauche et par le plan bleu à droite. L'ensemble admissible E est le pentagone vert. En optimisation mathématique, un problème d'optimisation linéaire demande de minimiser une fonction linéaire sur un polyèdre convexe. La fonction que l'on minimise ainsi que les contraintes sont décrites par des fonctions linéaires, d'où le nom donné à ces problèmes.
Union-findthumb|Partition avec 8 classes (qui sont des singletons) obtenue avec MakeSet(1), ..., MakeSet(8).|255x255px thumb|Partition avec 3 classes disjointes obtenue après Union(1, 2), Union(3, 4), Union(2, 5), Union(1, 6) et Union(2, 8).|255x255px En informatique, union-find est une structure de données qui représente une partition d'un ensemble fini (ou de manière équivalente une relation d'équivalence).