Pseudo-aléatoirethumb|Représentation graphique d'une suite pseudoaléatoire. Le terme pseudo-aléatoire est utilisé en mathématiques et en informatique pour désigner une suite de nombres qui s'approche d'un aléa statistiquement parfait. Les procédés algorithmiques utilisés pour la créer et les sources employées font que la suite ne peut être complètement considérée comme aléatoire. La majorité des nombres pseudo-aléatoires en informatique sont créés à partir d'algorithmes qui produisent une séquence de nombres présentant certaines propriétés du hasard.
Générateur de nombres aléatoires matérielEn informatique, un générateur de nombres aléatoires matériel (aussi appelé générateur de nombres aléatoires physique ; en anglais, hardware random number generator ou true random number generator) est un appareil qui génère des nombres aléatoires à partir d'un phénomène physique, plutôt qu'au moyen d'un programme informatique. De tels appareils sont souvent basés sur des phénomènes microscopiques qui génèrent de faibles signaux de bruit statistiquement aléatoires, tels que le bruit thermique ou l'effet photoélectrique.
Uncertainty quantificationUncertainty quantification (UQ) is the science of quantitative characterization and estimation of uncertainties in both computational and real world applications. It tries to determine how likely certain outcomes are if some aspects of the system are not exactly known. An example would be to predict the acceleration of a human body in a head-on crash with another car: even if the speed was exactly known, small differences in the manufacturing of individual cars, how tightly every bolt has been tightened, etc.
Graine aléatoireUne graine aléatoire (aussi appelée germe aléatoire) est un nombre utilisé pour l'initialisation d'un générateur de nombres pseudo-aléatoires. Toute la suite de nombres aléatoires produits par le générateur découle de façon déterministe de la valeur de la graine. Par contre, deux graines différentes produiront des suites de nombres aléatoires complètement différentes. Le choix d'une graine aléatoire est une étape cruciale en cryptologie et en sécurité informatique.
Probabilistic numericsProbabilistic numerics is an active field of study at the intersection of applied mathematics, statistics, and machine learning centering on the concept of uncertainty in computation. In probabilistic numerics, tasks in numerical analysis such as finding numerical solutions for integration, linear algebra, optimization and simulation and differential equations are seen as problems of statistical, probabilistic, or Bayesian inference.
Test (informatique)vignette|Une programmeuse écrivant du code Java avec JUnit. En informatique, un test désigne une procédure de vérification partielle d'un système. Son objectif principal est d'identifier un nombre maximal de comportements problématiques du logiciel. Il permet ainsi, dès lors que les problèmes identifiés seront corrigés, d'en augmenter la qualité. D'une manière plus générale, le test désigne toutes les activités qui consistent à rechercher des informations quant à la qualité du système afin de permettre la prise de décisions.
Méthode de RombergEn analyse numérique, la méthode d'intégration de Romberg est une méthode récursive de calcul numérique d'intégrale, fondée sur l'application du procédé d'extrapolation de Richardson à la méthode des trapèzes. Cette technique d'accélération permet d'améliorer l'ordre de convergence de la méthode des trapèzes, en appliquant cette dernière à des divisions dyadiques successives de l'intervalle d'étude et en formant une combinaison judicieuse.
Vérification de modèlesthumb|308x308px|Principe du model checking. En informatique, la vérification de modèles, ou model checking en anglais, est le problème suivant : vérifier si le modèle d'un système (souvent informatique ou électronique) satisfait une propriété. Par exemple, on souhaite vérifier qu'un programme ne se bloque pas, qu'une variable n'est jamais nulle, etc. Généralement, la propriété est écrite dans un langage, souvent en logique temporelle. La vérification est généralement faite de manière automatique.
Delta-2Delta-2 est un procédé d'accélération de la convergence de suites en analyse numérique, popularisé par le mathématicien Alexander Aitken en 1926. C'est l'un des algorithmes d'accélération de la convergence les plus populaires du fait de sa simplicité et de son efficacité. Une première forme de cet algorithme a été utilisée par Seki Kōwa (fin du ) pour calculer une approximation de π par la méthode des polygones d'Archimède.
Générateur congruentiel linéaireUn générateur congruentiel linéaire est un générateur de nombres pseudo-aléatoires dont l'algorithme, introduit en 1948 par Derrick Lehmer, sous une forme réduite, pour produire des nombres aléatoires, est basé sur des congruences et une fonction affine. Les nombres pseudo aléatoires forment une suite dont chaque terme dépend du précédent, selon la formule : où a est le multiplicateur, c l'incrément et m le module. Le terme initial est appelé la graine (seed en anglais). C'est elle qui va permettre de générer une suite apparemment aléatoire.