Dynamique des fluidesLa dynamique des fluides (hydrodynamique ou aérodynamique), est l'étude des mouvements des fluides, qu'ils soient liquides ou gazeux. Elle fait partie de la mécanique des fluides avec l'hydrostatique (statique des fluides). La résolution d'un problème de dynamique des fluides demande de calculer diverses propriétés des fluides comme la vitesse, la viscosité, la densité, la pression et la température en tant que fonctions de l'espace et du temps.
Mécanique des fluidesLa mécanique des fluides est un domaine de la physique consacré à l’étude du comportement des fluides (liquides, gaz et plasmas) et des forces internes associées. C’est une branche de la mécanique des milieux continus qui modélise la matière à l’aide de particules assez petites pour relever de l’analyse mathématique, mais assez grandes par rapport aux molécules pour être décrites par des fonctions continues. Elle comprend deux sous-domaines : la statique des fluides, qui est l’étude des fluides au repos, et la dynamique des fluides, qui est l’étude des fluides en mouvement.
Fluide newtonienOn appelle fluide newtonien (en hommage à Isaac Newton) un fluide dont la loi contrainte – vitesse de déformation est linéaire. La constante de proportionnalité est appelée viscosité. Viscosité L’équation décrivant le « comportement newtonien » en description eulérienne est : où : est la contrainte de cisaillement exercée par le fluide (à l'origine des forces de traînée), exprimée en Pa ; est la viscosité dynamique du fluide — une constante de proportionnalité caractéristique du matériau, en ; est le gradient de vitesse perpendiculaire à la direction de cisaillement, en s−1.
Flow velocityIn continuum mechanics the flow velocity in fluid dynamics, also macroscopic velocity in statistical mechanics, or drift velocity in electromagnetism, is a vector field used to mathematically describe the motion of a continuum. The length of the flow velocity vector is the flow speed and is a scalar. It is also called velocity field; when evaluated along a line, it is called a velocity profile (as in, e.g., law of the wall).
Condition aux limites de RobinEn mathématique, une condition aux limites de Robin (ou de troisième type) est un type de condition aux limites portant le nom du mathématicien français Victor Gustave Robin (1855-1897), qui a travaillé dans le domaine de la thermodynamique. Elle est également appelée condition aux limites de Fourier. Imposée à une équation différentielle ordinaire ou à une équation aux dérivées partielles, il s'agit d'une relation linéaire entre les valeurs de la fonction et les valeurs de la dérivée de la fonction sur le bord du domaine.
Condition aux limites de DirichletEn mathématiques, une condition aux limites de Dirichlet (nommée d’après Johann Dirichlet) est imposée à une équation différentielle ou à une équation aux dérivées partielles lorsque l'on spécifie les valeurs que la solution doit vérifier sur les frontières/limites du domaine. Pour une équation différentielle, par exemple : la condition aux limites de Dirichlet sur l'intervalle s'exprime par : où et sont deux nombres donnés.
Fracturation hydrauliqueLa fracturation hydraulique est la dislocation ciblée de formations géologiques peu perméables par le moyen de l'injection sous très haute pression d'un fluide destiné à fissurer et microfissurer la roche. Cette fracturation peut être pratiquée à proximité de la surface, ou à grande profondeur (à plus de , voire à plus de dans le cas du gaz de schiste), et à partir de puits verticaux, inclinés ou horizontaux.
Problème aux limitesEn analyse, un problème aux limites est constitué d'une équation différentielle (ou plus généralement aux dérivées partielles) dont on recherche une solution prenant de plus des valeurs imposées en des limites du domaine de résolution. Contrairement au problème analogue dit de Cauchy, où une ou plusieurs conditions en un même endroit sont imposées (typiquement la valeur de la solution et de ses dérivées successives en un point), auquel le théorème de Cauchy-Lipschitz apporte une réponse générale, les problèmes aux limites sont souvent des problèmes difficiles, et dont la résolution peut à chaque fois conduire à des considérations différentes.
Condition aux limites de NeumannEn mathématiques, une condition aux limites de Neumann (nommée d'après Carl Neumann) est imposée à une équation différentielle ou à une équation aux dérivées partielles lorsque l'on spécifie les valeurs des dérivées que la solution doit vérifier sur les frontières/limites du domaine. Pour une équation différentielle, par exemple : la condition aux limites de Neumann sur l'intervalle s'exprime par : où et sont deux nombres donnés.
Loi d'Ostwald–de WaeleLa loi d’Ostwald-de Waele ou loi en puissance est une loi de puissance définissant les fluides sans seuil. Elle relie la contrainte de cisaillement au taux de cisaillement. La loi d’Ostwald-de Waele est un modèle mathématique simple permettant de modéliser facilement un fluide non-newtonien sans seuil en reliant la contrainte de cisaillement τ (tau) au taux de cisaillement (gamma point) : où : K est une constante : l’indice de consistance ; n un nombre sans dimension : l’indice d’écoulement.