Court-circuitUn court-circuit est la mise en connexion volontaire ou accidentelle de deux points (ou plus) d’un circuit électrique entre lesquels il y a une différence de potentiel, par un conducteur de faible résistance. Il donne naissance à un courant de court-circuit et, généralement, à une élévation de la température des conducteurs.
Lois de Kirchhoffthumb|upright=.5|Portrait de Gustav Kirchhoff, qui a établi les lois portant son nom en 1845. Les lois de Kirchhoff expriment la conservation de l'énergie et de la charge dans un circuit électrique. Elles portent le nom du physicien allemand qui les a établies en 1845 : Gustav Kirchhoff. Dans un circuit complexe, il est possible de calculer les différences de potentiel aux bornes de chaque résistance et l'intensité du courant continu dans chaque branche de circuit en appliquant les deux lois de Kirchhoff : la loi des nœuds et la loi des mailles.
Loschmidt's paradoxIn physics, Loschmidt's paradox (named for J.J. Loschmidt), also known as the reversibility paradox, irreversibility paradox, or Umkehreinwand (), is the objection that it should not be possible to deduce an irreversible process from time-symmetric dynamics. This puts the time reversal symmetry of (almost) all known low-level fundamental physical processes at odds with any attempt to infer from them the second law of thermodynamics which describes the behaviour of macroscopic systems.
Mécanique hamiltonienneLa mécanique hamiltonienne est une reformulation de la mécanique newtonienne. Son formalisme a facilité l'élaboration théorique de la mécanique quantique. Elle a été formulée par William Rowan Hamilton en 1833 à partir des équations de Lagrange, qui reformulaient déjà la mécanique classique en 1788. En mécanique lagrangienne, les équations du mouvement d'un système à N degrés de liberté dépendent des coordonnées généralisées et des vitesses correspondantes , où .
Méthode des éléments finisEn analyse numérique, la méthode des éléments finis (MEF, ou FEM pour finite element method en anglais) est utilisée pour résoudre numériquement des équations aux dérivées partielles. Celles-ci peuvent par exemple représenter analytiquement le comportement dynamique de certains systèmes physiques (mécaniques, thermodynamiques, acoustiques).
MaquetteUne maquette est une représentation partielle ou complète d'un système ou d'un objet (existant ou en projet) afin d'en tester et valider certains aspects et/ou le comportement (maquette fonctionnelle), ou simplement à des fins ludiques (maquette de jeu) ou informatives (présentation pédagogique ou commerciale d'une réalisation ou d'un projet). La maquette peut être réalisée en deux ou trois dimensions, à une échelle donnée, le plus souvent réduite ou agrandie pour en faciliter la visualisation ou la manipulation.
Disjoncteurthumb|upright=1.2|Un disjoncteur bipolaire monté sur rail. Les deux contacteurs solidaires sont en parallèle, mais il existe aussi des disjoncteurs bipoles en monocontacteur. Un disjoncteur est un interrupteur électrique à commande automatique conçu pour laisser circuler le courant électrique, et, protéger un circuit électrique contre les dommages causés par un courant excessif provenant d'une surcharge, d'un court-circuit ou d'une fuite à la terre (disjoncteur différentiel).
Simulation de phénomènesLa simulation de phénomènes est un outil utilisé dans le domaine de la recherche et du développement. Elle permet d'étudier les réactions d'un système à différentes contraintes pour en déduire les résultats recherchés en se passant d'expérimentation. Les systèmes technologiques (infrastructures, véhicules, réseaux de communication, de transport ou d'énergie) sont soumis à différentes contraintes et actions. Le moyen le plus simple d'étudier leurs réactions serait d'expérimenter, c'est-à-dire d'exercer l'action souhaitée sur l'élément en cause pour observer ou mesurer le résultat.
Application momentEn géométrie symplectique, aux actions hamiltoniennes d'un groupe de Lie sur une variété symplectique est associée une application G-équivariante , appelée l'application moment. En un certain sens, elle généralise le moment rencontré en mécanique classique. L'application moment est définie par : où est le champ de vecteurs correspondant à l'action infinitésimale de . Action de groupe Action hamiltonienne Symplectomorphisme Difféomorphisme hamiltonien Contribution à l'étude de l'application moment, EL AZIRI Abdelhamid ; MARLE Charles-Miche Convexity properties of hamiltonian group actions, Principal Guillemin, Victor W.
Système dissipatifUn système dissipatif (ou structure dissipative) est un système qui évolue dans un environnement avec lequel il échange de l'énergie ou de la matière. C'est donc un système ouvert, loin d'un équilibre thermodynamique. Un système dissipatif est caractérisé par le bilan de ses échanges (échange d'énergie, création d'entropie), et l'apparition spontanée d'une brisure de symétrie spatiale (anisotropie) qui peut quelquefois laisser apparaître une structure complexe chaotique. L'expression « structures dissipatives » fut créée par Ilya Prigogine.