Fonction logistique (Verhulst)En mathématiques, les fonctions logistiques sont les fonctions ayant pour expression où et sont des réels positifs et un réel quelconque. Ce sont les solutions en temps continu du modèle de Verhulst. Pour , leur courbe représentative a la forme d'un S ce qui fait qu'elles sont parfois appelées sigmoïdes. Ces fonctions ont été mises en évidence (vers 1840) par Pierre-François Verhulst, qui cherchait un modèle d'évolution non exponentielle de population comportant un frein et une capacité d'accueil .
InterneuroneUn interneurone est un neurone multipolaire qui établit de multiples connexions entre un réseau afférent et un réseau efférent. Comme les motoneurones, leur corps cellulaire est toujours situé dans le système nerveux central (SNC). La majorité des interneurones sont inhibiteurs et sécrètent un neurotransmetteur caractéristique, le GABA. En comparaison du système nerveux périphérique (SNP), les neurones du système nerveux central peuvent être considérés comme des interneurones.
Pointes-OndesLes pointes-ondes (spike-and-wave en anglais) sont un motif d'oscillation de l'électroencéphalogramme (EEG) qui apparaît en général pendant certaines manifestations d'épilepsie chez l'homme ou chez l'animal. Les pointes-ondes sont observées en particulier lors de crises généralisées, par exemple lors du petit mal épileptique (crises d'absence). Chez l'homme, les pointes-ondes se produisent généralement autour d'une fréquence de 3 Hz ou moins, et sont caractérisées par une remarquable synchronie bilatérale.
Cortex cérébralLe cortex cérébral (ou écorce cérébrale), d'origine prosencéphalique, est la substance grise périphérique des hémisphères cérébraux. Il se compose de trois couches (pour l'archi- et le paléocortex) à six couches (pour le néocortex) renfermant différentes classes de neurones, d'interneurones et de cellules gliales. Le cortex peut être segmenté en différentes aires selon des critères cytoarchitectoniques (nombre de couches, type de neurones), de leur connexions, notamment avec le thalamus, et de leur fonction.
Types of artificial neural networksThere are many types of artificial neural networks (ANN). Artificial neural networks are computational models inspired by biological neural networks, and are used to approximate functions that are generally unknown. Particularly, they are inspired by the behaviour of neurons and the electrical signals they convey between input (such as from the eyes or nerve endings in the hand), processing, and output from the brain (such as reacting to light, touch, or heat). The way neurons semantically communicate is an area of ongoing research.
Models of neural computationModels of neural computation are attempts to elucidate, in an abstract and mathematical fashion, the core principles that underlie information processing in biological nervous systems, or functional components thereof. This article aims to provide an overview of the most definitive models of neuro-biological computation as well as the tools commonly used to construct and analyze them.
Single-unit recordingIn neuroscience, single-unit recordings (also, single-neuron recordings) provide a method of measuring the electro-physiological responses of a single neuron using a microelectrode system. When a neuron generates an action potential, the signal propagates down the neuron as a current which flows in and out of the cell through excitable membrane regions in the soma and axon. A microelectrode is inserted into the brain, where it can record the rate of change in voltage with respect to time.
Medium spiny neuronMedium spiny neurons (MSNs), also known as spiny projection neurons (SPNs), are a special type of GABAergic inhibitory cell representing 95% of neurons within the human striatum, a basal ganglia structure. Medium spiny neurons have two primary phenotypes (characteristic types): D1-type MSNs of the direct pathway and D2-type MSNs of the indirect pathway. Most striatal MSNs contain only D1-type or D2-type dopamine receptors, but a subpopulation of MSNs exhibit both phenotypes.
Réseau de neurones artificielsUn réseau de neurones artificiels, ou réseau neuronal artificiel, est un système dont la conception est à l'origine schématiquement inspirée du fonctionnement des neurones biologiques, et qui par la suite s'est rapproché des méthodes statistiques. Les réseaux de neurones sont généralement optimisés par des méthodes d'apprentissage de type probabiliste, en particulier bayésien.
Colonne corticalevignette|Reconstruction 3D de cinq colonnes corticales dans le cortex vibratoire du rat Une colonne corticale est un groupe de neurones situés dans le cortex cérébral dont les champs de réception sont identiques. D’ailleurs, si on introduit une microélectrode perpendiculairement à travers les différentes couches du cortex visuel, on ne rencontrera par exemple que des neurones qui ont la même préférence d’orientation, qu’ils aient des champs récepteurs simples ou complexes. Il s'agit dans cet exemple d'une colonne d'orientation.