Functor represented by a schemeIn algebraic geometry, a functor represented by a scheme X is a set-valued contravariant functor on the category of schemes such that the value of the functor at each scheme S is (up to natural bijections) the set of all morphisms . The scheme X is then said to represent the functor and that classify geometric objects over S given by F. The best known example is the Hilbert scheme of a scheme X (over some fixed base scheme), which, when it exists, represents a functor sending a scheme S to a flat family of closed subschemes of .
Étale morphismIn algebraic geometry, an étale morphism (etal) is a morphism of schemes that is formally étale and locally of finite presentation. This is an algebraic analogue of the notion of a local isomorphism in the complex analytic topology. They satisfy the hypotheses of the implicit function theorem, but because open sets in the Zariski topology are so large, they are not necessarily local isomorphisms. Despite this, étale maps retain many of the properties of local analytic isomorphisms, and are useful in defining the algebraic fundamental group and the étale topology.
Espace séquentielEn mathématiques, un espace séquentiel est un espace topologique dont la topologie est définie par l'ensemble de ses suites convergentes. C'est le cas en particulier pour tout espace à base dénombrable. Soit X un espace topologique. Un sous-ensemble U de X est dit « séquentiellement ouvert » si toute suite (xn) de X qui converge vers un point de U « appartient à U à partir d'un certain rang ». Un sous-ensemble F de X est dit « séquentiellement fermé » si la convergence d'une suite (xn) de F vers x implique que x appartient à F.
Fibré adjointEn géométrie différentielle, le fibré adjoint est un fibré vectoriel associé particulier d'un -fibré principal. Il joue un rôle important en théorie de jauge où les transformations de jauge infinitésimales, les vecteurs tangents à l'espace des formes de connexions et la 2-forme de courbure sont toutes des formes différentielles à valeurs dans le fibré adjoint. Soient : un groupe de Lie ; l'algèbre de Lie de ; une variété différentielle ; un -fibré principal sur ; l'action de groupe à droite de sur ; la représentation adjointe de sur son algèbre de Lie .
Espace nucléaireEn mathématiques, et plus précisément en analyse, un espace nucléaire est un espace vectoriel topologique possédant certaines propriétés analogues à celles des espaces de dimension finie. Leur topologie peut être définie par une famille de semi-normes dont la taille des boules unités décroit rapidement. Les espaces vectoriels dont les éléments sont « lisses » en un certain sens sont souvent des espaces nucléaires ; un exemple typique est celui des fonctions régulières sur une variété compacte.
Cohomologie cristallineLa cohomologie cristalline est une cohomologie de Weil pour les schémas, introduite par Alexander Grothendieck en 1966 et développée par Pierre Berthelot. Elle étend le domaine d'application de la cohomologie étale en considérant les modules sur les anneaux de vecteurs de Witt sur le corps de base. Conjectures de Weil Dans l'étude des variétés différentiables compactes, la formule de Lefschetz permet de calculer le nombre de points fixes d'un morphisme de la variété dans elle-même.
Application transposéeEn mathématiques et plus précisément en algèbre linéaire, l'application transposée d'une application linéaire entre deux espaces vectoriels est l'application entre leurs duals définie par : ou encore, si est le crochet de dualité de : La forme linéaire résultante est nommée application transposée de le long de . Cette définition se généralise à des K-modules à droite sur un anneau (non nécessairement commutatif), en se souvenant que le dual d'un K-module à droite est un K-module à gauche, ou encore un module à droite sur l'anneau opposé K.
Relation algebraIn mathematics and abstract algebra, a relation algebra is a residuated Boolean algebra expanded with an involution called converse, a unary operation. The motivating example of a relation algebra is the algebra 2 X 2 of all binary relations on a set X, that is, subsets of the cartesian square X2, with R•S interpreted as the usual composition of binary relations R and S, and with the converse of R as the converse relation. Relation algebra emerged in the 19th-century work of Augustus De Morgan and Charles Peirce, which culminated in the algebraic logic of Ernst Schröder.
Objet exponentielEn mathématiques, et plus particulièrement en théorie des catégories, un objet exponentiel est un équivalent catégorique à un espace fonctionnel en théorie des ensembles. Les catégories avec tous les produits finis et tous les objets exponentiels sont appelées catégories cartésiennes fermées. Un objet exponentiel peut aussi être appelé un objet puissance ou objet des morphismes. Soit C une catégorie avec produits et soient Y et Z des objets de C. L'objet exponentiel ZY peut être défini comme un morphisme universel du foncteur –×Y à Z.
Tensor-hom adjunctionIn mathematics, the tensor-hom adjunction is that the tensor product and hom-functor form an adjoint pair: This is made more precise below. The order of terms in the phrase "tensor-hom adjunction" reflects their relationship: tensor is the left adjoint, while hom is the right adjoint. Say R and S are (possibly noncommutative) rings, and consider the right module categories (an analogous statement holds for left modules): Fix an -bimodule and define functors and as follows: Then is left adjoint to .