Problème de l'arbre de SteinerEn algorithmique, le problème de l'arbre de Steiner est un problème d'optimisation combinatoire. Il porte le nom du mathématicien Jakob Steiner. Ce problème est proche du problème de l'arbre couvrant minimal et a des applications en conception de réseaux, notamment les circuits électroniques et les télécommunications. Il existe plusieurs variantes du problème. Dans un espace métrique, étant donné un ensemble de points P, un arbre pour P est un réseau (c'est-à-dire un ensemble de chemins connectés) tel que tous les points soient reliés, et un arbre est dit de Steiner si la longueur totale du réseau est minimale.
Problème NP-completEn théorie de la complexité, un problème NP-complet ou problème NPC (c'est-à-dire un problème complet pour la classe NP) est un problème de décision vérifiant les propriétés suivantes : il est possible de vérifier une solution efficacement (en temps polynomial) ; la classe des problèmes vérifiant cette propriété est notée NP ; tous les problèmes de la classe NP se ramènent à celui-ci via une réduction polynomiale ; cela signifie que le problème est au moins aussi difficile que tous les autres problèmes de l
Optimisation non linéaireEn optimisation, vue comme branche des mathématiques, l'optimisation non linéaire (en anglais : nonlinear programming – NLP) s'occupe principalement des problèmes d'optimisation dont les données, i.e., les fonctions et ensembles définissant ces problèmes, sont non linéaires, mais sont aussi différentiables autant de fois que nécessaire pour l'établissement des outils théoriques, comme les conditions d'optimalité, ou pour la bonne marche des algorithmes de résolution qui y sont introduits et analysés.
Edge coverIn graph theory, an edge cover of a graph is a set of edges such that every vertex of the graph is incident to at least one edge of the set. In computer science, the minimum edge cover problem is the problem of finding an edge cover of minimum size. It is an optimization problem that belongs to the class of covering problems and can be solved in polynomial time. Formally, an edge cover of a graph G is a set of edges C such that each vertex in G is incident with at least one edge in C.
Maximal independent setIn graph theory, a maximal independent set (MIS) or maximal stable set is an independent set that is not a subset of any other independent set. In other words, there is no vertex outside the independent set that may join it because it is maximal with respect to the independent set property. For example, in the graph P_3, a path with three vertices a, b, and c, and two edges and , the sets {b} and {a, c} are both maximally independent. The set {a} is independent, but is not maximal independent, because it is a subset of the larger independent set {a, c}.
Optimisation SDPEn mathématiques et en informatique théorique, l'optimisation SDP ou semi-définie positive, est un type d'optimisation convexe, qui étend l'optimisation linéaire. Dans un problème d'optimisation SDP, l'inconnue est une matrice symétrique que l'on impose d'être semi-définie positive. Comme en optimisation linéaire, le critère à minimiser est linéaire et l'inconnue doit également satisfaire une contrainte affine. L'optimisation SDP se généralise par l'optimisation conique, qui s'intéresse aux problèmes de minimisation d'une fonction linéaire sur l'intersection d'un cône et d'un sous-espace affine.
Problème de flot maximumthumb|right|Un exemple de graphe de flot avec un flot maximum. la source est , et le puits . Les nombres indiquent le flot et la capacité. Le problème de flot maximum consiste à trouver, dans un réseau de flot, un flot réalisable depuis une source unique et vers un puits unique qui soit maximum. Quelquefois, on ne s'intéresse qu'à la valeur de ce flot. Le s-t flot maximum (depuis la source s vers le puits t) est égal à la s-t coupe minimum du graphe, comme l'indique le théorème flot-max/coupe-min.
Problème du voyageur de commercevignette|Le problème de voyageur de commerce : calculer un plus court circuit qui passe une et une seule fois par toutes les villes (ici 15 villes). En informatique, le problème du voyageur de commerce, ou problème du commis voyageur, est un problème d'optimisation qui consiste à déterminer, étant donné un ensemble de villes, le plus court circuit passant par chaque ville une seule fois. C'est un problème algorithmique célèbre, qui a donné lieu à de nombreuses recherches et qui est souvent utilisé comme introduction à l'algorithmique ou à la théorie de la complexité.
Complexité en tempsEn algorithmique, la complexité en temps est une mesure du temps utilisé par un algorithme, exprimé comme fonction de la taille de l'entrée. Le temps compte le nombre d'étapes de calcul avant d'arriver à un résultat. Habituellement, le temps correspondant à des entrées de taille n est le temps le plus long parmi les temps d’exécution des entrées de cette taille ; on parle de complexité dans le pire cas. Les études de complexité portent dans la majorité des cas sur le comportement asymptotique, lorsque la taille des entrées tend vers l'infini, et l'on utilise couramment les notations grand O de Landau.
Ensemble dominantEn théorie des graphes, un ensemble dominant (ou dominating set en anglais) d'un graphe G = ( S, A ) est un sous-ensemble D de l'ensemble S des sommets tel que tout sommet qui n'appartient pas à D possède au moins une arête d'extrémité un sommet de D. Le problème de l'ensemble dominant est de déterminer, étant donné G et un entier naturel k, si G possède un ensemble dominant d'au plus k sommets. Ce problème est NP-complet.