Miroir semi-réfléchissantUn miroir semi-réfléchissant est un type de miroir dont la particularité est de ne réfléchir qu'une partie de la lumière qu'il reçoit, et de laisser passer l'autre partie (indépendamment de sa couleur, avec la technologie actuelle). En d'autres termes, il sépare un rayon incident en deux flux lumineux, l'un réfléchi, l'autre réfracté (la partie diffusée, de plus faible quantité, étant négligeable, de même que la partie absorbée, transformée en chaleur).
Transversal (geometry)In geometry, a transversal is a line that passes through two lines in the same plane at two distinct points. Transversals play a role in establishing whether two or more other lines in the Euclidean plane are parallel. The intersections of a transversal with two lines create various types of pairs of angles: consecutive interior angles, consecutive exterior angles, corresponding angles, and alternate angles. As a consequence of Euclid's parallel postulate, if the two lines are parallel, consecutive interior angles are supplementary, corresponding angles are equal, and alternate angles are equal.
Distance (mathématiques)En mathématiques, une distance est une application qui formalise l'idée intuitive de distance, c'est-à-dire la longueur qui sépare deux points. C'est par l'analyse des principales propriétés de la distance usuelle que Fréchet introduit la notion d'espace métrique, développée ensuite par Hausdorff. Elle introduit un langage géométrique dans de nombreuses questions d'analyse et de théorie des nombres.
Port parallèleLe port parallèle est un connecteur situé à l'arrière des ordinateurs compatibles PC reposant sur la communication parallèle. Il est associé à l'interface parallèle Centronics. La communication parallèle a été conçue pour une imprimante imprimant du texte, caractère par caractère. Les imprimantes graphiques (pouvant imprimer des images) ont ensuite continué à utiliser ce système pour profiter de l'interface parallèle normalisée. Le port parallèle est à l'origine unidirectionnel.
Interface utilisateurL’interface utilisateur est un dispositif matériel ou logiciel qui permet à un usager d'interagir avec un produit informatique. C'est une interface informatique qui coordonne les interactions homme-machine, en permettant à l'usager humain de contrôler le produit et d'échanger des informations avec le produit. Parmi les exemples d’interface utilisateur figurent les aspects interactifs des systèmes d’exploitation informatiques, des logiciels informatiques, des smartphones et, dans le domaine du design industriel, les commandes des opérateurs de machines lourdes et les commandes de processus.
Exit pupilIn optics, the exit pupil is a virtual aperture in an optical system. Only rays which pass through this virtual aperture can exit the system. The exit pupil is the of the aperture stop in the optics that follow it. In a telescope or compound microscope, this image is the image of the objective element(s) as produced by the eyepiece. The size and shape of this disc is crucial to the instrument's performance, because the observer's eye can see light only if it passes through the aperture.
Surface de RiemannEn géométrie différentielle et géométrie analytique complexe, une surface de Riemann est une variété complexe de dimension 1. Cette notion a été introduite par Bernhard Riemann pour prendre en compte les singularités et les complications topologiques qui accompagnent certains prolongements analytiques de fonctions holomorphes. Par oubli de structure, une surface de Riemann se présente comme une variété différentielle réelle de dimension 2, d'où le nom surface. Elles ont été nommées en hommage au mathématicien allemand Bernhard Riemann.
Longueur d'un arcthumb|Camille Jordan est l'auteur de la définition la plus courante de la longueur d'un arc. En géométrie, la question de la longueur d'un arc est simple à concevoir (intuitive). L'idée d'arc correspond à celle d'une ligne, ou d'une trajectoire d'un point dans un plan ou l'espace par exemple. Sa longueur peut être vue comme la distance parcourue par un point matériel suivant cette trajectoire ou encore comme la longueur d'un fil prenant exactement la place de cette ligne. La longueur d'un arc est, soit un nombre positif, soit l'infini.
Axiome des parallèlesL’axiome d'Euclide, dit également cinquième postulat d’Euclide, est dû au savant grec Euclide (). C'est un axiome relatif à la géométrie du plan. La nécessité de cet axiome a constitué la question la plus lancinante de toute l'histoire de la géométrie, et il a fallu plus de deux millénaires de débats ininterrompus pour que la communauté scientifique reconnaisse l'impossibilité de le réduire au statut de simple théorème. vignette|Illustration de l'axiome d'Euclide : La droite S détermine les angles internes α et β avec les droites g et h.
Résolution d'un triangleEn géométrie, la résolution d'un triangle consiste en la détermination des différents éléments d'un triangle (longueurs des côtés, mesure des angles, aire) à partir de certains autres. Historiquement, la résolution des triangles fut motivée en cartographie, pour la mesure des distances par triangulation ; en géométrie euclidienne chez les Grecs, pour la résolution de nombreux problèmes de géométrie ; en navigation, pour le point, qui utilise des calculs de coordonnées terrestres et astronomiques (trigonométrie sphérique).