Espace vectorielvignette|Dans un espace vectoriel, on peut additionner deux vecteurs. Par exemple, la somme du vecteur v (en bleu) et w (en rouge) est v + w. On peut aussi multiplier un vecteur, comme le vecteur w que l'on peut multiplier par 2, on obtient alors 2w et la somme devient v + 2w. En mathématiques, plus précisément en algèbre linéaire, un espace vectoriel est un ensemble d'objets, appelés vecteurs, que l'on peut additionner entre eux, et que l'on peut multiplier par un scalaire (pour les étirer ou les rétrécir, les tourner, etc.
Algorithmethumb|Algorithme de découpe d'un polygone quelconque en triangles (triangulation). Un algorithme est une suite finie et non ambiguë d'instructions et d’opérations permettant de résoudre une classe de problèmes. Le domaine qui étudie les algorithmes est appelé l'algorithmique. On retrouve aujourd'hui des algorithmes dans de nombreuses applications telles que le fonctionnement des ordinateurs, la cryptographie, le routage d'informations, la planification et l'utilisation optimale des ressources, le , le traitement de textes, la bio-informatique L' algorithme peut être mis en forme de façon graphique dans un algorigramme ou organigramme de programmation.
Théorie des automatesEn informatique théorique, l'objectif de la théorie des automates est de proposer des modèles de mécanismes mathématiques qui formalisent les méthodes de calcul.
Product typeIn programming languages and type theory, a product of types is another, compounded, type in a structure. The "operands" of the product are types, and the structure of a product type is determined by the fixed order of the operands in the product. An instance of a product type retains the fixed order, but otherwise may contain all possible instances of its primitive data types. The expression of an instance of a product type will be a tuple, and is called a "tuple type" of expression.
Algorithme de sélectionEn algorithmique, un algorithme de sélection est une méthode ayant pour but de trouver le k-ième plus petit élément d'un ensemble d'objets (étant donné un ordre et un entier k). La question de la sélection est un problème essentiel en algorithmique, notamment dans la recherche du maximum, du minimum et de la médiane. Plusieurs algorithmes ont été proposés et plusieurs contextes ont été étudiés : algorithmes en ligne, complexité amortie, complexité en moyenne, ensemble d'objet particuliers etc.
Lemme d'itération pour les langages algébriquesLe lemme d'itération pour les langages algébriques, aussi connu sous le vocable lemme de Bar-Hillel, Perles et Shamir, donne une condition de répétition nécessaire pour les langages algébriques. Sa version simplifiée pour les langages rationnels est le lemme de l'étoile. Une version plus élaborée du lemme d'itération est le lemme d'Ogden. Le lemme indique donc que, dans un langage algébrique, certains facteurs de mots assez longs peuvent être itérés de concert.
Automate à pileUn automate à pile est une machine abstraite utilisée en informatique théorique et, plus précisément, en théorie des automates. Un automate à pile est une généralisation des automates finis : il dispose en plus d'une mémoire infinie organisée en pile (last-in/first-out ou LIFO). Un automate à pile prend en entrée un mot et réalise une série de transitions. Il effectue pour chaque lettre du mot une transition, dont le choix dépend de la lettre, de l'état de l'automate et du sommet de la pile ; il peut aussi modifier le contenu de la pile.
Équation diophantiennevignette|Édition de 1670 des Arithmétiques de Diophante. Une équation diophantienne, en mathématiques, est une équation polynomiale à une ou plusieurs inconnues dont les solutions sont cherchées parmi les nombres entiers, éventuellement rationnels, les coefficients étant eux-mêmes également entiers. La branche des mathématiques qui s'intéresse à la résolution de telles équations s'est appelée longtemps l'analyse indéterminée avant de se fondre dans l'arithmétique ou la théorie des nombres.
RécursivitéLa récursivité est une démarche qui fait référence à l'objet même de la démarche à un moment du processus. En d'autres termes, c'est une démarche dont la description mène à la répétition d'une même règle.
Fonction récursive primitiveEn théorie de la calculabilité, une fonction récursive primitive est une fonction construite à partir de la fonction nulle, de la fonction successeur, des fonctions projections et des schémas de récursion primitive (ou bornée) et de composition. Ces fonctions constituent un sous-ensemble strict des fonctions récursives. Elles ont été initialement analysées par la mathématicienne Rózsa Péter. On s'intéresse aux fonctions définies sur l'ensemble des entiers naturels, ou sur les ensembles des -uplets d'entiers naturels, et à valeurs dans .