Géométrie algébriqueLa géométrie algébrique est un domaine des mathématiques qui, historiquement, s'est d'abord intéressé à des objets géométriques (courbes, surfaces...) composés des points dont les coordonnées vérifiaient des équations ne faisant intervenir que des sommes et des produits (par exemple le cercle unité dans le plan rapporté à un repère orthonormé admet pour équation ). La simplicité de cette définition fait qu'elle embrasse un grand nombre d'objets et qu'elle permet de développer une théorie riche.
Géométrie complexeIn mathematics, complex geometry is the study of geometric structures and constructions arising out of, or described by, the complex numbers. In particular, complex geometry is concerned with the study of spaces such as complex manifolds and complex algebraic varieties, functions of several complex variables, and holomorphic constructions such as holomorphic vector bundles and coherent sheaves. Application of transcendental methods to algebraic geometry falls in this category, together with more geometric aspects of complex analysis.
Géométrie birationnellethumb|right|Le cercle est birationnellement équivalent à la droite. Un exemple d'application birationnelle est la projection stéréographique, représentée ici ; avec les notations du texte, P a pour abscisse 1/t. En mathématiques, la géométrie birationnelle est un domaine de la géométrie algébrique dont l'objectif est de déterminer si deux variétés algébriques sont isomorphes, à un ensemble négligeable près. Cela revient à étudier des applications définies par des fonctions rationnelles plutôt que par des polynômes, ces applications n'étant pas définies aux pôles des fonctions.
Derived algebraic geometryDerived algebraic geometry is a branch of mathematics that generalizes algebraic geometry to a situation where commutative rings, which provide local charts, are replaced by either differential graded algebras (over ), simplicial commutative rings or -ring spectra from algebraic topology, whose higher homotopy groups account for the non-discreteness (e.g., Tor) of the structure sheaf. Grothendieck's scheme theory allows the structure sheaf to carry nilpotent elements.
Minimal model programIn algebraic geometry, the minimal model program is part of the birational classification of algebraic varieties. Its goal is to construct a birational model of any complex projective variety which is as simple as possible. The subject has its origins in the classical birational geometry of surfaces studied by the Italian school, and is currently an active research area within algebraic geometry. The basic idea of the theory is to simplify the birational classification of varieties by finding, in each birational equivalence class, a variety which is "as simple as possible".
École italienne de géométrie algébriqueD'un point de vue historique, lécole italienne de géométrie algébrique fait référence à un grand groupe de mathématiciens italiens des XIXe et XXe siècles qui, avec leur travail vaste, profond et cohérent, mené méthodologiquement avec une approche d'étude et de recherche commune, a amené l'Italie au plus haut niveau en géométrie algébrique, en particulier en géométrie birationnelle et en théorie des surfaces algébriques, avec des résultats originaux de premier ordre. vignette|droite|Guido Castelnuovo (1865-1952).
Rational mappingIn mathematics, in particular the subfield of algebraic geometry, a rational map or rational mapping is a kind of partial function between algebraic varieties. This article uses the convention that varieties are irreducible. Formally, a rational map between two varieties is an equivalence class of pairs in which is a morphism of varieties from a non-empty open set to , and two such pairs and are considered equivalent if and coincide on the intersection (this is, in particular, vacuously true if the intersection is empty, but since is assumed irreducible, this is impossible).
Géométrie arithmétiquevignette|Exemples de figures géométriques: un cône et un cylindre. La géométrie arithmétique est une branche de la théorie des nombres, qui utilise des outils de géométrie algébrique pour s'attaquer à des problèmes arithmétiques. Quelques exemples de questions qui peuvent se poser : Si on sait trouver des racines d'une équation polynomiale dans toutes les complétions d'un corps de nombres, peut-on en déduire que cette équation a des racines sur ce corps ? On sait répondre à la question dans certains cas, on sait que la réponse est non dans d'autres cas, mais on pense (c'est une conjecture) connaître l'obstruction et donc savoir reconnaître quand cela fonctionne.
Courbe algébriqueEn mathématiques, et plus précisément en géométrie algébrique, une courbe algébrique est une variété algébrique (ou un schéma de type fini) sur un corps, dont les composantes irréductibles sont de dimension 1. Cette définition est la généralisation moderne de celle des courbes algébriques classiques, telles que les coniques, définies, dans le cas des courbes planes, comme l'ensemble des points solutions d'une équation polynomiale. Sous sa forme la plus générale, une courbe algébrique sur un corps est une variété algébrique de dimension 1 sur , séparée pour éviter des pathologies.
Variété algébriqueUne variété algébrique est, de manière informelle, l'ensemble des racines communes d'un nombre fini de polynômes en plusieurs indéterminées. C'est l'objet d'étude de la géométrie algébrique. Les schémas sont des généralisations des variétés algébriques. Il y a deux points de vue (essentiellement équivalents) sur les variétés algébriques : elles peuvent être définies comme des schémas de type fini sur un corps (langage de Grothendieck), ou bien comme la restriction d'un tel schéma au sous-ensemble des points fermés.