Équations d'EulerEn mécanique des fluides, les équations d'Euler sont des équations aux dérivées partielles non linéaires qui décrivent l'écoulement des fluides (liquide ou gaz) dans l’approximation des milieux continus. Ces écoulements sont adiabatiques, sans échange de quantité de mouvement par viscosité ni d'énergie par conduction thermique. L'histoire de ces équations remonte à Leonhard Euler qui les a établies pour des écoulements incompressibles (1757).
Generalization errorFor supervised learning applications in machine learning and statistical learning theory, generalization error (also known as the out-of-sample error or the risk) is a measure of how accurately an algorithm is able to predict outcome values for previously unseen data. Because learning algorithms are evaluated on finite samples, the evaluation of a learning algorithm may be sensitive to sampling error. As a result, measurements of prediction error on the current data may not provide much information about predictive ability on new data.
Dynamique des fluidesLa dynamique des fluides (hydrodynamique ou aérodynamique), est l'étude des mouvements des fluides, qu'ils soient liquides ou gazeux. Elle fait partie de la mécanique des fluides avec l'hydrostatique (statique des fluides). La résolution d'un problème de dynamique des fluides demande de calculer diverses propriétés des fluides comme la vitesse, la viscosité, la densité, la pression et la température en tant que fonctions de l'espace et du temps.
Early stoppingIn machine learning, early stopping is a form of regularization used to avoid overfitting when training a learner with an iterative method, such as gradient descent. Such methods update the learner so as to make it better fit the training data with each iteration. Up to a point, this improves the learner's performance on data outside of the training set. Past that point, however, improving the learner's fit to the training data comes at the expense of increased generalization error.
Théorie de l'apprentissage statistiqueLa théorie de l'apprentissage statistique est un système d'apprentissage automatique à partir des domaines de la statistique et de l'analyse fonctionnelle. La théorie de l'apprentissage statistique traite du problème de la recherche d'une fonction prédictive basée sur des données. La théorie de l'apprentissage statistique a conduit à des applications dans des domaines tels que la vision par ordinateur, la reconnaissance de la parole, la bioinformatique. Les objectifs de l'apprentissage sont la prédiction et la compréhension.
ConnexionnismeLe connexionnisme est une approche utilisée en sciences cognitives, neurosciences, psychologie et philosophie de l'esprit. Le connexionnisme modélise les phénomènes mentaux ou comportementaux comme des processus émergents de réseaux d'unités simples interconnectées. Le plus souvent les connexionnistes modélisent ces phénomènes à l'aide de réseaux de neurones. Il s'agit d'une théorie qui a émergé à la fin des années 1980 en tant qu'alternative au computationnalisme (Putnam, Fodor) alors dominant.
Salaire minimumLe salaire minimum, ou salaire minimal, est la rémunération minimale qu'un employeur peut légalement accorder à un employé pour un travail. Des abattements au salaire minimal sont parfois prévus par des dispositifs législatifs ou réglementaires. est l'adjectif qualifiant ce qui constitue un minimum. L'expression est critiquée par certains linguistes selon lesquels elle présente le défaut de juxtaposer deux substantifs (le salaire et le minimum) sur le modèle anglophone. Les formulations correctes seraient ici , ou .
Analyse numériqueL’analyse numérique est une discipline à l'interface des mathématiques et de l'informatique. Elle s’intéresse tant aux fondements qu’à la mise en pratique des méthodes permettant de résoudre, par des calculs purement numériques, des problèmes d’analyse mathématique. Plus formellement, l’analyse numérique est l’étude des algorithmes permettant de résoudre numériquement par discrétisation les problèmes de mathématiques continues (distinguées des mathématiques discrètes).
Dilemme biais-varianceEn statistique et en apprentissage automatique, le dilemme (ou compromis) biais–variance est le problème de minimiser simultanément deux sources d'erreurs qui empêchent les algorithmes d'apprentissage supervisé de généraliser au-delà de leur échantillon d'apprentissage : Le biais est l'erreur provenant d’hypothèses erronées dans l'algorithme d'apprentissage. Un biais élevé peut être lié à un algorithme qui manque de relations pertinentes entre les données en entrée et les sorties prévues (sous-apprentissage).
Jeux d'entrainement, de validation et de testEn apprentissage automatique, une tâche courante est l'étude et la construction d'algorithmes qui peuvent apprendre et faire des prédictions sur les données. De tels algorithmes fonctionnent en faisant des prédictions ou des décisions basées sur les données, en construisant un modèle mathématique à partir des données d'entrée. Ces données d'entrée utilisées pour construire le modèle sont généralement divisées en plusieurs jeux de données .