Équations de Maxwellvignette|Plaque représentant les équations de Maxwell au pied de la statue en hommage à James Clerk Maxwell d'Edimbourg. Les équations de Maxwell, aussi appelées équations de Maxwell-Lorentz, sont des lois fondamentales de la physique. Elles constituent, avec l'expression de la force électromagnétique de Lorentz, les postulats de base de l'électromagnétisme. Ces équations traduisent sous forme locale différents théorèmes (Gauss, Ampère, Faraday) qui régissaient l'électromagnétisme avant que Maxwell ne les réunisse sous forme d'équations intégrales.
VolumeLe volume, en sciences physiques ou mathématiques, est une grandeur qui mesure l'extension d'un objet ou d'une partie de l'espace. En physique : le volume d'un objet ou d'une figure géométrique tridimensionnelle et fermée mesure l'extension dans l'espace physique qu'il ou elle possède dans les trois directions en même temps, de même que l'aire d'une figure dans le plan mesure l'extension qu'elle possède dans les deux directions en même temps ; par extension, on étend la notion de volume à des espaces abstraits, dont les coordonnées peuvent avoir une ou des dimensions autres que celle d'une longueur.
Tomographie par émission monophotoniquevignette|droite|Image dans le plan axial du cerveau obtenue par tomographie d'émission monophotonique utilisant le Tc-99. La tomographie par émission monophotonique, en abrégé TEMP, ou même SPECT (de l'Single photon emission computed tomography), aussi appelée tomoscintigraphie par émission monophotonique, est une technique qui repose sur le principe de la scintigraphie et qui permet d'effectuer des images ainsi que des reconstructions en trois dimensions d'organes et de leur métabolisme à l'aide d'un ensemble de gamma caméras tournant autour du patient.
Intégration (mathématiques)En mathématiques, l'intégration ou calcul intégral est l'une des deux branches du calcul infinitésimal, l'autre étant le calcul différentiel. Les intégrales sont utilisées dans de multiples disciplines scientifiques notamment en physique pour des opérations de mesure de grandeurs (longueur d'une courbe, aire, volume, flux) ou en probabilités. Ses utilités pluridisciplinaires en font un outil scientifique fondamental. C'est la raison pour laquelle l'intégration est souvent abordée dès l'enseignement secondaire.
Optique géométriqueL’optique géométrique est une branche de l'optique qui s'appuie notamment sur le modèle du rayon lumineux. Cette approche simple permet entre autres des constructions géométriques d’images, d’où son nom. Elle constitue l'outil le plus flexible et le plus efficace pour traiter les systèmes dioptriques et catadioptriques. Elle permet ainsi d'expliquer la formation des images. L'optique géométrique (la première théorie optique formulée) se trouve validée a posteriori par l'optique ondulatoire, en faisant l'approximation que tous les éléments utilisés sont de grande dimension devant la longueur d'onde de la lumière.
Équations de Lagrangevignette|Joseph-Louis Lagrange Les équations de Lagrange, découvertes en 1788 par le mathématicien Joseph-Louis Lagrange, sont une reformulation de la mécanique classique. Il s'agit d'une reformulation de l'équation de Newton, qui ne fait pas intervenir les forces de réaction. Pour cela, on exprime les contraintes que subit la particule étudiée sous la forme d'équations du type : Il n'y a qu'une équation si le mouvement est contraint à une surface, deux s'il est contraint à une courbe.