Alignement de séquencesEn bio-informatique, l'alignement de séquences (ou alignement séquentiel) est une manière de représenter deux ou plusieurs séquences de macromolécules biologiques (ADN, ARN ou protéines) les unes sous les autres, de manière à en faire ressortir les régions homologues ou similaires. L'objectif de l'alignement est de disposer les composants (nucléotides ou acides aminés) pour identifier les zones de concordance. Ces alignements sont réalisés par des programmes informatiques dont l'objectif est de maximiser le nombre de coïncidences entre nucléotides ou acides aminés dans les différentes séquences.
Espace topologique irréductibleEn topologie, un espace irréductible est un espace topologique non vide qui ne peut pas se décomposer en (c'est-à-dire s'écrire comme réunion de) deux parties fermées strictement plus petites. Ce type d'espaces apparaît (et est utilisé) surtout en géométrie algébrique, où l'irréductibilité est une des propriétés topologiques basiques.
Espace localement simplement connexeEn mathématiques, un espace localement simplement connexe est un espace topologique qui admet une base d'ouverts simplement connexes. Tout espace localement simplement connexe est donc localement connexe par arcs et a fortiori localement connexe. Le cercle est localement simplement connexe mais pas simplement connexe. La boucle d'oreille hawaïenne n'est pas localement simplement connexe ni simplement connexe, puisqu'elle n'est même pas . Le cône de la boucle d'oreille hawaïenne est contractile donc simplement connexe, mais n'est pas localement simplement connexe.
Semi-locally simply connectedIn mathematics, specifically algebraic topology, semi-locally simply connected is a certain local connectedness condition that arises in the theory of covering spaces. Roughly speaking, a topological space X is semi-locally simply connected if there is a lower bound on the sizes of the “holes” in X. This condition is necessary for most of the theory of covering spaces, including the existence of a universal cover and the Galois correspondence between covering spaces and subgroups of the fundamental group.
N-connexitéDans le domaine mathématique de la topologie algébrique et plus précisément en théorie de l'homotopie, la n-connexité est une généralisation de la connexité par arcs (cas n = 0) et de la connexité simple (cas n = 1) : un espace topologique est dit n-connexe si son homotopie est triviale jusqu'au degré n et une application continue est n-connexe si elle induit des isomorphismes en homotopie « presque » jusqu'au degré n. Pour tout entier naturel n, un espace X est dit n-connexe s'il est connexe par arcs et si ses n premiers groupes d'homotopie π(X) (0 < k ≤ n) sont triviaux.
Espace totalement discontinuEn mathématiques, plus précisément en topologie, un espace totalement discontinu est un espace topologique qui est « le moins connexe possible » au sens où il n'a pas de partie connexe non triviale : dans tout espace topologique, l'ensemble vide et les singletons sont connexes ; dans un espace totalement discontinu, ce sont les seules parties connexes. Un exemple populaire d'espace totalement discontinu est l'ensemble de Cantor. Un autre exemple, important en théorie algébrique des nombres, est le corps Qp des nombres p-adiques.
Espace complètement métrisableUn espace complètement métrisable (ou espace métriquement topologiquement complet) est un espace topologique (X, T) pour lequel il existe au moins une distance d sur X telle d induit la topologie T (c'est-à-dire que X est métrisable) et fait de (X, d) un espace métrique complet. Le terme d'espace topologiquement complet est employé par certains auteurs comme synonyme despace complètement métrisable, mais parfois aussi utilisé pour d'autres classes d'espaces topologiques, comme les espaces complètement uniformisables ou les espaces Čech-complets.