Robustesse (statistiques)En statistiques, la robustesse d'un estimateur est sa capacité à ne pas être perturbé par une modification dans une petite partie des données ou dans les paramètres du modèle choisi pour l'estimation. Ricardo A. Maronna, R. Douglas Martin et Victor J. Yohai; Robust Statistics - Theory and Methods, Wiley Series in Probability and Statistics (2006). Dagnelie P.; Statistique théorique et appliquée. Tome 2 : Inférence statistique à une et à deux dimensions, Paris et Bruxelles (2006), De Boeck et Larcier.
Filtre de Kalmanvignette| Concept de base du filtre de Kalman. En statistique et en théorie du contrôle, le filtre de Kalman est un filtre à réponse impulsionnelle infinie qui estime les états d'un système dynamique à partir d'une série de mesures incomplètes ou bruitées. Le filtre a été nommé d'après le mathématicien et informaticien américain d'origine hongroise Rudolf Kálmán. Le filtre de Kalman est utilisé dans une large gamme de domaines technologiques (radar, vision électronique, communication...).
Robust regressionIn robust statistics, robust regression seeks to overcome some limitations of traditional regression analysis. A regression analysis models the relationship between one or more independent variables and a dependent variable. Standard types of regression, such as ordinary least squares, have favourable properties if their underlying assumptions are true, but can give misleading results otherwise (i.e. are not robust to assumption violations).
Robustesse (ingénierie)En ingénierie, la robustesse d'un système se définit comme la « stabilité de sa performance ». On distingue trois types de systèmes : les systèmes non-performants, qui ne remplissent pas les fonctionnalités attendues par l'utilisateur ; les systèmes performants fragiles, qui sont performants mais uniquement pour une plage réduite des paramètres internes ou externes ; les systèmes performants robustes, qui restent performants malgré des conditions externes présentant de larges variations d'amplitude (exemple : variation de température, d'adhérence au sol, de dispersion d'usinage.
Théorie du contrôleEn mathématiques et en sciences de l'ingénieur, la théorie du contrôle a comme objet l'étude du comportement de systèmes dynamiques paramétrés en fonction des trajectoires de leurs paramètres. On se place dans un ensemble, l'espace d'état sur lequel on définit une dynamique, c'est-à-dire une loi mathématiques caractérisant l'évolution de variables (dites variables d'état) au sein de cet ensemble. Le déroulement du temps est modélisé par un entier .
Réseau de téléphonie mobileUn réseau de téléphonie mobile est un réseau téléphonique qui permet l'utilisation simultanée de millions de téléphones sans fil, immobiles ou en mouvement, y compris lors de déplacements à grande vitesse et sur une grande distance. Pour atteindre cet objectif, toutes les technologies d'accès radio doivent résoudre un même problème : partager et répartir aussi efficacement que possible une bande de fréquences hertzienne unique entre de très nombreux utilisateurs.
Simulation de phénomènesLa simulation de phénomènes est un outil utilisé dans le domaine de la recherche et du développement. Elle permet d'étudier les réactions d'un système à différentes contraintes pour en déduire les résultats recherchés en se passant d'expérimentation. Les systèmes technologiques (infrastructures, véhicules, réseaux de communication, de transport ou d'énergie) sont soumis à différentes contraintes et actions. Le moyen le plus simple d'étudier leurs réactions serait d'expérimenter, c'est-à-dire d'exercer l'action souhaitée sur l'élément en cause pour observer ou mesurer le résultat.
Sliding mode controlIn control systems, sliding mode control (SMC) is a nonlinear control method that alters the dynamics of a nonlinear system by applying a discontinuous control signal (or more rigorously, a set-valued control signal) that forces the system to "slide" along a cross-section of the system's normal behavior. The state-feedback control law is not a continuous function of time. Instead, it can switch from one continuous structure to another based on the current position in the state space.
Assimilation de donnéesEn météorologie, l'assimilation de données est le procédé qui consiste à corriger, à l'aide d'observations, l'état de l'atmosphère d'une prévision météorologique. La prévision numérique de l'évolution de l'atmosphère dépend grandement des conditions initiales qui lui sont fournies. Or il est difficile de déterminer, à un instant donné, l'état de l'atmosphère, c’est-à-dire l’ensemble des variables atmosphériques (pression, température, humidité, etc.) sur l’ensemble du volume, avec une bonne résolution et une bonne précision.
Modèle de Markov cachéUn modèle de Markov caché (MMC, terme et définition normalisés par l’ISO/CÉI [ISO/IEC 2382-29:1999]) — (HMM)—, ou plus correctement (mais non employé) automate de Markov à états cachés, est un modèle statistique dans lequel le système modélisé est supposé être un processus markovien de paramètres inconnus. Contrairement à une chaîne de Markov classique, où les transitions prises sont inconnues de l'utilisateur mais où les états d'une exécution sont connus, dans un modèle de Markov caché, les états d'une exécution sont inconnus de l'utilisateur (seuls certains paramètres, comme la température, etc.