Calcul distribuéUn calcul distribué, ou réparti ou encore partagé, est un calcul ou un traitement réparti sur plusieurs microprocesseurs et plus généralement sur plusieurs unités centrales informatiques, et on parle alors d'architecture distribuée ou de système distribué. Le calcul distribué est souvent réalisé sur des clusters de calcul spécialisés, mais peut aussi être réalisé sur des stations informatiques individuelles à plusieurs cœurs. La distribution d'un calcul est un domaine de recherche des sciences mathématiques et informatiques.
Système de fichiers distribuéEn informatique, un système de fichiers distribués ou système de fichiers en réseau est un système de fichiers qui permet le partage de fichiers à plusieurs clients au travers du réseau informatique. Contrairement à un système de fichiers local, le client n'a pas accès au système de stockage sous-jacent, et interagit avec le système de fichiers via un protocole adéquat. CephFS Coda GlusterFS GPFS Hadoop Distributed File System (HDFS) Lustre OrangeFS SheepDog Unity, du logiciel Perfect Dark Catégorie:Systèm
Table de hachage distribuéeUne table de hachage distribuée (ou DHT pour Distributed Hash Table), est une technique permettant la mise en place d’une table de hachage dans un système réparti. Une table de hachage est une structure de données de type clé → valeur. Chaque donnée est associée à une clé et est distribuée sur le réseau. Les tables de hachage permettent de répartir le stockage de données sur l’ensemble des nœuds du réseau, chaque nœud étant responsable d’une partie des données.
Fonction gaussiennevignette|Fonction gaussienne pour μ = 0, σ = 1 ; courbe centrée en zéro. Une fonction gaussienne est une fonction en exponentielle de l'opposé du carré de l'abscisse (une fonction en exp(-x)). Elle a une forme caractéristique de courbe en cloche. L'exemple le plus connu est la densité de probabilité de la loi normale où μ est l'espérance mathématique et σ est l'écart type. Les fonctions gaussiennes sont analytiques, de limite nulle en l'infini. La largeur à mi-hauteur H vaut la demi-largeur à mi-hauteur vaut donc environ 1,177·σ.
Gaussian blurIn , a Gaussian blur (also known as Gaussian smoothing) is the result of blurring an by a Gaussian function (named after mathematician and scientist Carl Friedrich Gauss). It is a widely used effect in graphics software, typically to reduce and reduce detail. The visual effect of this blurring technique is a smooth blur resembling that of viewing the image through a translucent screen, distinctly different from the bokeh effect produced by an out-of-focus lens or the shadow of an object under usual illumination.
Erreur quadratique moyenneEn statistiques, l’erreur quadratique moyenne d’un estimateur d’un paramètre de dimension 1 (mean squared error (), en anglais) est une mesure caractérisant la « précision » de cet estimateur. Elle est plus souvent appelée « erreur quadratique » (« moyenne » étant sous-entendu) ; elle est parfois appelée aussi « risque quadratique ».
Stratégie d'évaluation (informatique)Un langage de programmation utilise une stratégie d'évaluation pour déterminer « quand » évaluer les arguments à l'appel d'une fonction (ou encore, opération, méthode) et « comment » passer les arguments à la fonction. Par exemple, dans l'appel par valeur, les arguments doivent être évalués avant d'être passés à la fonction. La stratégie d'évaluation d'un langage de programmation est spécifiée par la définition du langage même. En pratique, la plupart des langages de programmation (Java, C...
Évaluation paresseuseL’évaluation paresseuse (), appelée aussi appel par nécessité ou évaluation retardée est une technique d'implémentation des programmes récursifs pour laquelle l'évaluation d'un paramètre de fonction ne se fait pas avant que les résultats de cette évaluation ne soient réellement nécessaires. Ces résultats, une fois calculés, sont préservés pour des réutilisations ultérieures. Dans un langage comme Haskell, l'évaluation est paresseuse par défaut.
Racine de l'erreur quadratique moyenneLa racine de l'erreur quadratique moyenne (REQM) ou racine de l'écart quadratique moyen (en anglais, root-mean-square error ou RMSE, et root-mean-square deviation ou RMSD) est une mesure fréquemment utilisée des différences entre les valeurs (valeurs d'échantillon ou de population) prédites par un modèle ou estimateur et les valeurs observées (ou vraies valeurs). La REQM représente la racine carrée du deuxième moment d'échantillonnage des différences entre les valeurs prédites et les valeurs observées.
Filtre de GaussLe filtre de Gauss est, en électronique et en traitement du signal, un filtre dont la réponse impulsionnelle est une fonction gaussienne. Le filtre de Gauss minimise les temps de montée et de descente, tout en assurant l'absence de dépassement en réponse à un échelon. Cette propriété est étroitement liée au fait que le filtre de Gauss présente un retard de groupe minimal. En mathématiques, le filtre de Gauss modifie le signal entrant par une convolution avec une fonction gaussienne ; cette transformation est également appelée transformation de Weierstrass.