Estimation spectraleL'estimation spectrale regroupe toutes les techniques d'estimation de la densité spectrale de puissance (DSP). Les méthodes d'estimation spectrale paramétriques utilisent un modèle pour obtenir une estimation du spectre. Ces modèles reposent sur une connaissance a priori du processus et peuvent être classées en trois grandes catégories : Modèles autorégressif (AR) Modèles à moyenne ajustée (MA) Modèles autorégressif à moyenne ajustée (ARMA). L'approche paramétrique se décompose en trois étapes : Choisir un modèle décrivant le processus de manière appropriée.
Décomposition en valeurs singulièresEn mathématiques, le procédé d'algèbre linéaire de décomposition en valeurs singulières (ou SVD, de l'anglais singular value decomposition) d'une matrice est un outil important de factorisation des matrices rectangulaires réelles ou complexes. Ses applications s'étendent du traitement du signal aux statistiques, en passant par la météorologie. Le théorème spectral énonce qu'une matrice normale peut être diagonalisée par une base orthonormée de vecteurs propres.
ItérationEn mathématiques, une itération désigne l'action de répéter un processus. Le calcul itératif permet l'application à des équations récursives. Le terme itération est issu du verbe latin iterare qui signifie « cheminer » ou de iter « chemin ». Le processus d'itération est employé fréquemment en algorithmique. Une itération en mathématiques peut se référer au processus d'itération d'une fonction, c'est-à-dire, appliquer une fonction à plusieurs reprises, en utilisant la même itération à la sortie qu'à l'entrée.
Théorème fondamental de l'arithmétiqueEn mathématiques, et en particulier en arithmétique élémentaire, le théorème fondamental de l'arithmétique ou théorème de décomposition en produit de facteurs premiers s'énonce ainsi : tout entier strictement positif peut être écrit comme un produit de nombres premiers d'une unique façon, à l'ordre près des facteurs. Par exemple, nous pouvons écrire que : = 2 × 3 × 17 ou encore = 2 × 3 × 5 et il n'existe aucune autre factorisation de ou sous forme de produits de nombres premiers, excepté par réarrangement des facteurs ci-dessus.