Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
When an epidemic spreads in a given network of individuals or communities, can we detect its source using only the information provided by a small set of nodes? We propose a general framework that incorporates two dimensions. First, we can either rely exclusively on a set of selected nodes (i.e., sensors) which always reveal their state independently of any particular epidemic (these are called static), or we can add some sensors (called dynamic) as an epidemic spreads, depending on which additional information is required. Second, the method can either localizes the source after an epidemic has spread through the entire network (offline), or while the epidemic is ongoing (online). We empirically study the performance of offline and online localization both with and without dynamic sensors. Our analysis shows that, by using dynamic sensors, the number of sensors necessary to localize the source is reduced by up to a factor of 10 and that, even with high-variance transmission delays, the source can be localized by using fewer than 5% of the nodes as sensors.
Edoardo Charbon, Paul Mos, Mohit Gupta
Jan Wienold, Geraldine Cai Ting Quek, Dong Hyun Kim
Hussein Fadl Hassan Hassan Osman