Stress–strain analysisStress–strain analysis (or stress analysis) is an engineering discipline that uses many methods to determine the stresses and strains in materials and structures subjected to forces. In continuum mechanics, stress is a physical quantity that expresses the internal forces that neighboring particles of a continuous material exert on each other, while strain is the measure of the deformation of the material. In simple terms we can define stress as the force of resistance per unit area, offered by a body against deformation.
Statistique bayésienneLa statistique bayésienne est une approche statistique fondée sur l'inférence bayésienne, où la probabilité exprime un degré de croyance en un événement. Le degré initial de croyance peut être basé sur des connaissances a priori, telles que les résultats d'expériences antérieures, ou sur des croyances personnelles concernant l'événement. La perspective bayésienne diffère d'un certain nombre d'autres interprétations de la probabilité, comme l'interprétation fréquentiste qui considère la probabilité comme la limite de la fréquence relative d'un événement après de nombreux essais.
Credible intervalIn Bayesian statistics, a credible interval is an interval within which an unobserved parameter value falls with a particular probability. It is an interval in the domain of a posterior probability distribution or a predictive distribution. The generalisation to multivariate problems is the credible region. Credible intervals are analogous to confidence intervals and confidence regions in frequentist statistics, although they differ on a philosophical basis: Bayesian intervals treat their bounds as fixed and the estimated parameter as a random variable, whereas frequentist confidence intervals treat their bounds as random variables and the parameter as a fixed value.
Gestion des connaissancesLa gestion des connaissances (en anglais knowledge management) est une démarche managériale pluridisciplinaire qui regroupe l'ensemble des initiatives, des méthodes et des techniques permettant de percevoir, identifier, analyser, organiser, mémoriser, partager les connaissances des membres d'une organisation – les savoirs créés par l'entreprise elle-même (marketing, recherche et développement) ou acquis de l'extérieur (intelligence économique) – en vue d'atteindre un objectif fixé. Nous sommes submergés d'informations.
Variable aléatoire à densitéEn théorie des probabilités, une variable aléatoire à densité est une variable aléatoire réelle, scalaire ou vectorielle, pour laquelle la probabilité d'appartenance à un domaine se calcule à l'aide d'une intégrale sur ce domaine. La fonction à intégrer est alors appelée « fonction de densité » ou « densité de probabilité », égale (dans le cas réel) à la dérivée de la fonction de répartition. Les densités de probabilité sont les fonctions essentiellement positives et intégrables d'intégrale 1.
Bayesian hierarchical modelingBayesian hierarchical modelling is a statistical model written in multiple levels (hierarchical form) that estimates the parameters of the posterior distribution using the Bayesian method. The sub-models combine to form the hierarchical model, and Bayes' theorem is used to integrate them with the observed data and account for all the uncertainty that is present. The result of this integration is the posterior distribution, also known as the updated probability estimate, as additional evidence on the prior distribution is acquired.
Ingénierie des structuresL'ingénierie des structures est un domaine de l'ingénierie et plus particulièrement du génie civil, traitant de la stabilité des constructions (conception et de l'analyse des structures). Une structure est soumise à différentes actions, permanentes ou variables dans le temps, statiques ou dynamiques, de nature mécanique ou thermique, et sa conception vise à satisfaire certains critères vis-à-vis de ces actions : Sécurité : sa résistance, son équilibre et sa stabilité doivent être assurés avec une probabilité choisie ; Performance : son fonctionnement et le confort associés doivent être garantis pour une durée suffisante ; Durabilité : la dégradation de la structure dans le temps doit être limitée et maîtrisée pour satisfaire les deux premiers critères.
Modèle linéaire généraliséEn statistiques, le modèle linéaire généralisé (MLG) souvent connu sous les initiales anglaises GLM est une généralisation souple de la régression linéaire. Le GLM généralise la régression linéaire en permettant au modèle linéaire d'être relié à la variable réponse via une fonction lien et en autorisant l'amplitude de la variance de chaque mesure d'être une fonction de sa valeur prévue, en fonction de la loi choisie.
Pontvignette|Pont permettant le passage de la ligne C du métro de Rotterdam, à Capelle-sur-l'Yssel (Pays-Bas). vignette|Pont sur la rivière Moyka à Saint-Pétersbourg, Russie Un pont est un ouvrage d'art qui permet de franchir un obstacle naturel ou artificiel (dépression, cours d'eau, voie de communication, vallée, ravin, canyon) en passant par-dessus. Le franchissement supporte le passage d'humains et de véhicules dans le cas d'un pont routier, ou d'eau dans le cas d'un aqueduc.
Quasi-likelihoodIn statistics, quasi-likelihood methods are used to estimate parameters in a statistical model when exact likelihood methods, for example maximum likelihood estimation, are computationally infeasible. Due to the wrong likelihood being used, quasi-likelihood estimators lose asymptotic efficiency compared to, e.g., maximum likelihood estimators. Under broadly applicable conditions, quasi-likelihood estimators are consistent and asymptotically normal. The asymptotic covariance matrix can be obtained using the so-called sandwich estimator.