Matrice de HadamardUne matrice de Hadamard est une matrice carrée dont les coefficients sont tous 1 ou –1 et dont les lignes sont toutes orthogonales entre elles. Le nom retenu pour ces matrices rend hommage au mathématicien français Jacques Hadamard. Des exemples de telles matrices avaient été donnés par James Joseph Sylvester. Pour une matrice d'ordre , la propriété d'orthogonalité des colonnes peut également s'écrire sous la forme où In est la matrice identité d'ordre et t est la matrice transposée de .
Matrice inversibleEn mathématiques et plus particulièrement en algèbre linéaire, une matrice inversible (ou régulière ou encore non singulière) est une matrice carrée A pour laquelle il existe une matrice B de même taille n avec laquelle les produits AB et BA sont égaux à la matrice identité. Dans ce cas la matrice B est unique, appelée matrice inverse de A et notée B = A. Cette définition correspond à celle d’élément inversible pour la multiplication dans l’anneau des matrices carrées associé.
Réduction en espace logarithmiqueEn théorie de la complexité, une réduction en espace logarithmique est une réduction calculable par une machine de Turing disposant d'un espace de travail logarithmique. La machine de Turing utilisée pour une réduction en espace logarithmique est constituée de trois rubans au lieu d'un : un ruban d'entrée (en lecture seule), un ruban de travail (de taille logarithmique en la taille du ruban d'entrée), et un ruban de sortie (en écriture seule et tel que la tête d'écriture ne peut écrire deux fois sur une même case).
L (complexité)En informatique théorique, et notamment dans la théorie de la complexité, la classe L est la classe des problèmes de décision décidés par une machine de Turing déterministe qui utilise un espace de taille logarithmique en fonction de la taille de l'entrée. Pour être plus précis, l'exigence sur l'espace de taille logarithmique se réfère à l'espace supplémentaire utilisable. Elle est aussi parfois notée LOGSPACE.
TensorFlowTensorFlow est un outil open source d'apprentissage automatique développé par Google. Le code source a été ouvert le par Google et publié sous licence Apache. Il est fondé sur l'infrastructure DistBelief, initiée par Google en 2011, et est doté d'une interface pour Python, Julia et R TensorFlow est l'un des outils les plus utilisés en IA dans le domaine de l'apprentissage machine. À partir de 2011, Google Brain a développé un outil propriétaire d'apprentissage automatique fondé sur l'apprentissage profond.
Algorithme de Las VegasEn informatique, un algorithme de Las Vegas est un type d'algorithme probabiliste qui donne toujours un résultat correct ; son caractère aléatoire lui donne de meilleures performances temporelles en moyenne. Comme le suggère David Harel dans son livre d'algorithmique, ainsi que Motvani et Raghavan, le tri rapide randomisé est un exemple paradigmatique d'algorithme de Las Vegas.
GMRESEn mathématique, la généralisation de la méthode de minimisation du résidu (ou GMRES, pour Generalized minimal residual) est une méthode itérative pour déterminer une solution numérique d'un système d'équations linéaires. La méthode donne une approximation de la solution par un vecteur appartenant à un sous-espace de Krylov avec un résidu minimal. Pour déterminer ce vecteur, on utilise la . La méthode GMRES fut développée par Yousef Saad et Martin H. Schultz en 1986.
Algorithme de rechercheEn informatique, un algorithme de recherche est un type d'algorithme qui, pour un domaine, un problème de ce domaine et des critères donnés, retourne en résultat un ensemble de solutions répondant au problème. Supposons que l'ensemble de ses entrées soit divisible en sous-ensemble, par rapport à un critère donné, qui peut être, par exemple, une relation d'ordre. De façon générale, un tel algorithme vérifie un certain nombre de ces entrées et retourne en sortie une ou plusieurs des entrées visées.
Méthode de la puissance itéréeEn mathématiques, la méthode de la puissance itérée ou méthode des puissances est un algorithme pour calculer la valeur propre dominante d'une matrice. Bien que cet algorithme soit simple à mettre en œuvre et populaire, il ne converge pas très vite. Étant donné une matrice A, on cherche une valeur propre de plus grand module et un vecteur propre associé. Le calcul de valeurs propres n'est en général pas possible directement (avec une formule close) : on utilise alors des méthodes itératives, et la méthode des puissances est la plus simple d'entre elles.
Multigrid methodIn numerical analysis, a multigrid method (MG method) is an algorithm for solving differential equations using a hierarchy of discretizations. They are an example of a class of techniques called multiresolution methods, very useful in problems exhibiting multiple scales of behavior. For example, many basic relaxation methods exhibit different rates of convergence for short- and long-wavelength components, suggesting these different scales be treated differently, as in a Fourier analysis approach to multigrid.