Object code optimizerAn object code optimizer, sometimes also known as a post pass optimizer or, for small sections of code, peephole optimizer, forms part of a software compiler. It takes the output from the source language compile step - the object code or - and tries to replace identifiable sections of the code with replacement code that is more algorithmically efficient (usually improved speed). The earliest "COBOL Optimizer" was developed by Capex Corporation in the mid 1970s for COBOL.
Cadre ZachmanLe cadre Zachman est un cadre d'architecture d'entreprise qui permet d'une manière formelle et hautement structurée de définir le système d'information d'une entreprise. Il utilise un modèle de classification à deux dimensions basé sur : six interrogations de base : Quoi, Comment, Où, Qui, Quand, et Pourquoi (What, How, Where, Who, When, Why), qui croisent six types de modèles distincts qui se rapportent à des groupes de parties prenantes : Visionnaire, Propriétaire, Concepteur, Réalisateur, Sous-traitant et Exécutant (visionary, owner, designer, builder, implementer, worker) pour présenter une vue holistique de l'entreprise qui est modélisée.
Optimisation multidisciplinaireL'Optimisation de Conception Multidisciplinaire (OMD ou MDO, Multidisciplinary Design Optimisation, en anglais) est un domaine d'ingénierie qui utilise des méthodes d'optimisation afin de résoudre des problèmes de conception mettant en œuvre plusieurs disciplines. La MDO permet aux concepteurs d'incorporer les effets de chacune des disciplines en même temps. L'optimum global ainsi trouvé est meilleur que la configuration trouvée en optimisant chaque discipline indépendamment des autres, car l'on prend en compte les interactions entre les disciplines.
Recherche locale (optimisation)En algorithmique, la recherche locale est une méthode générale utilisée pour résoudre des problèmes d'optimisation, c'est-à-dire des problèmes où l'on cherche la meilleure solution dans un ensemble de solutions candidates. La recherche locale consiste à passer d'une solution à une autre solution proche dans l'espace des solutions candidates (l'espace de recherche) jusqu'à ce qu'une solution considérée comme optimale soit trouvée, ou que le temps imparti soit dépassé.
Heuristique (mathématiques)Au sens le plus large, l'heuristique est la psychologie de la découverte, abordée par différents mathématiciens. En algorithmique, une heuristique est une méthode de calcul qui fournit rapidement une solution réalisable, pas nécessairement optimale ou exacte, pour un problème d'optimisation difficile. On distingue en général plusieurs temps la prise en compte du problème (question, contexte : données, contraintes, acteurs, tenants et aboutissants) l'incubation, recherche de solution, rumination parfois très longue ; la méthode du problème résolu peut ici dégager les conditions nécessaires à respecter.
Cadre d'architectureUn cadre d'architecture est une spécification sur la façon d'organiser et de présenter une architecture de systèmes ou l'architecture informatique d'un organisme. Étant donné que les disciplines de l'architecture de systèmes et de l'architecture informatique sont très larges, et que la taille de ces systèmes peut être très grande, il peut en résulter des modèles très complexes. Afin de gérer cette complexité, il est avantageux de définir un cadre d'architecture par un ensemble standard de catégories de modèles (appelés “vues”) qui ont chacun un objectif spécifique.
Optimisation convexevignette|320x320px|Optimisation convexe dans un espace en deux dimensions dans un espace contraint L'optimisation convexe est une sous-discipline de l'optimisation mathématique, dans laquelle le critère à minimiser est convexe et l'ensemble admissible est convexe. Ces problèmes sont plus simples à analyser et à résoudre que les problèmes d'optimisation non convexes, bien qu'ils puissent être NP-difficile (c'est le cas de l'optimisation copositive). La théorie permettant d'analyser ces problèmes ne requiert pas la différentiabilité des fonctions.
Peephole optimizationPeephole optimization is an optimization technique performed on a small set of compiler-generated instructions; the small set is known as the peephole or window. Peephole optimization involves changing the small set of instructions to an equivalent set that has better performance.
Algorithme génétiqueLes algorithmes génétiques appartiennent à la famille des algorithmes évolutionnistes. Leur but est d'obtenir une solution approchée à un problème d'optimisation, lorsqu'il n'existe pas de méthode exacte (ou que la solution est inconnue) pour le résoudre en un temps raisonnable. Les algorithmes génétiques utilisent la notion de sélection naturelle et l'appliquent à une population de solutions potentielles au problème donné.
Algorithme mémétiqueLes algorithmes mémétiques appartiennent à la famille des algorithmes évolutionnistes. Leur but est d'obtenir une solution approchée à un problème d'optimisation, lorsqu'il n'existe pas de méthode de résolution pour résoudre le problème de manière exacte en un temps raisonnable. Les algorithmes mémétiques sont nés d'une hybridation entre les algorithmes génétiques et les algorithmes de recherche locale. Ils utilisent le même processus de résolution que les algorithmes génétiques mais utilisent un opérateur de recherche locale après celui de mutation.