Graph operationsIn the mathematical field of graph theory, graph operations are operations which produce new graphs from initial ones. They include both unary (one input) and binary (two input) operations. Unary operations create a new graph from a single initial graph. Elementary operations or editing operations, which are also known as graph edit operations, create a new graph from one initial one by a simple local change, such as addition or deletion of a vertex or of an edge, merging and splitting of vertices, edge contraction, etc.
Graphe grilleIn graph theory, a lattice graph, mesh graph, or grid graph is a graph whose drawing, embedded in some Euclidean space \mathbb{R}^n, forms a regular tiling. This implies that the group of bijective transformations that send the graph to itself is a lattice in the group-theoretical sense. Typically, no clear distinction is made between such a graph in the more abstract sense of graph theory, and its drawing in space (often the plane or 3D space). This type of graph may more shortly be called just a lattice, mesh, or grid.
Homogeneous relationIn mathematics, a homogeneous relation (also called endorelation) on a set X is a binary relation between X and itself, i.e. it is a subset of the Cartesian product X × X. This is commonly phrased as "a relation on X" or "a (binary) relation over X". An example of a homogeneous relation is the relation of kinship, where the relation is between people. Common types of endorelations include orders, graphs, and equivalences. Specialized studies of order theory and graph theory have developed understanding of endorelations.
Sémantique opérationnelleEn informatique, la sémantique opérationnelle est l'une des approches qui servent à donner une signification aux programmes informatiques d'une manière rigoureuse, mathématiquement parlant (voir Sémantique des langages de programmation). Une sémantique opérationnelle d'un langage de programmation particulier décrit comment chaque programme valide du langage doit être interprété en termes de suite d'états successifs dans la machine. Cette suite d'états est la signification du programme.
Graphe aléatoirevignette|Graphe orienté aléatoire avec 20 nœuds et une probabilité de présence d'arête égale à 0,1. En mathématiques, un graphe aléatoire est un graphe généré par un processus aléatoire. Le premier modèle de graphes aléatoires a été popularisé par Paul Erdős et Alfréd Rényi dans une série d'articles publiés entre 1959 et 1968. Il y a deux modèles d'Erdős et Rényi, formellement différents, mais étroitement liés : le graphe aléatoire binomial et le graphe aléatoire uniforme.
Sémantique dénotationnelleEn informatique, la sémantique dénotationnelle est une des approches permettant de formaliser la signification d'un programme en utilisant les mathématiques. Parmi les autres approches, on trouve la sémantique axiomatique et la sémantique opérationnelle. Cette discipline a été introduite par Christopher Strachey et Dana Scott. En général, la sémantique dénotationnelle utilise des techniques de programmation fonctionnelle pour décrire les langages informatiques, les architectures et les programmes.
Relation inverseIn mathematics, the converse relation, or transpose, of a binary relation is the relation that occurs when the order of the elements is switched in the relation. For example, the converse of the relation 'child of' is the relation 'parent of'. In formal terms, if and are sets and is a relation from to then is the relation defined so that if and only if In set-builder notation, The notation is analogous with that for an inverse function. Although many functions do not have an inverse, every relation does have a unique converse.
SemanticsSemantics () is the study of reference, meaning, or truth. The term can be used to refer to subfields of several distinct disciplines, including philosophy, linguistics and computer science. In English, the study of meaning in language has been known by many names that involve the Ancient Greek word σῆμα (sema, "sign, mark, token"). In 1690, a Greek rendering of the term semiotics, the interpretation of signs and symbols, finds an early allusion in John Locke's An Essay Concerning Human Understanding: The third Branch may be called σημειωτική [simeiotikí, "semiotics"], or the Doctrine of Signs, the most usual whereof being words, it is aptly enough termed also λογικὴ, Logick.
Sémantique des langages de programmationEn informatique théorique, la sémantique formelle (des langages de programmation) est l’étude de la signification des programmes informatiques vus en tant qu’objets mathématiques. Comme en linguistique, la sémantique, appliquée aux langages de programmation, désigne le lien entre un signifiant, le programme, et un signifié, objet mathématique. L'objet mathématique dépend des propriétés à connaître du programme. La sémantique est également le lien entre : le langage signifiant : le langage de programmation le langage signifié : logique de Hoare, automates.
Relation sérielleEn mathématiques, une relation binaire sur E est dite sérielle si chaque élément de E est en relation avec au moins un élément de E. Formellement, la propriété de sérialité pour une relation définie sur un ensemble s'écrit de la façon suivante :. La relation de divisibilité sur les entiers strictement positifs est sérielle puisque ; La relation d'ordre strict « est strictement inférieur à » sur est sérielle puisque ; La relation « est strictement supérieur à » n'est pas sérielle sur car ; Les relations réflexives ou totales sont nécessairement sérielles.