Partitionnement de donnéesvignette|upright=1.2|Exemple de clustering hiérarchique. Le partitionnement de données (ou data clustering en anglais) est une méthode en analyse des données. Elle vise à diviser un ensemble de données en différents « paquets » homogènes, en ce sens que les données de chaque sous-ensemble partagent des caractéristiques communes, qui correspondent le plus souvent à des critères de proximité (similarité informatique) que l'on définit en introduisant des mesures et classes de distance entre objets.
K-moyennesLe partitionnement en k-moyennes (ou k-means en anglais) est une méthode de partitionnement de données et un problème d'optimisation combinatoire. Étant donnés des points et un entier k, le problème est de diviser les points en k groupes, souvent appelés clusters, de façon à minimiser une certaine fonction. On considère la distance d'un point à la moyenne des points de son cluster ; la fonction à minimiser est la somme des carrés de ces distances.
Embouteillage (route)vignette|Embouteillage à Los Angeles en 1953. Un embouteillage (« bouchon » ou « file » en Europe, « congestion » au Canada) est un encombrement de la circulation, généralement automobile, réduisant fortement la vitesse de circulation des véhicules sur la voie. right|thumb|Les départs ou les retours de vacances sont une des sources d'embouteillage (Algarve, Portugal, été 2005). Les mots embouteillage, bouchon et congestion (également utilisé en anglais) sont utilisés par analogie, tous ces mots étant auparavant employés dans d'autres domaines.
Circulation routièrethumb|Bouchon routier La circulation routière est le déplacement réglementé des automobiles, d'autres véhicules ou des piétons; au sens large, sur une route, une autoroute ou tout autre type de voirie. vignette|Convention de Genève de 1949 vignette|Convention de Vienne de 1968 La circulation routière s'est développée au vingtième siècle, localement et internationalement. Pour faciliter le développement international de la circulation routière, des conventions ont été établies.
Traffic flowIn mathematics and transportation engineering, traffic flow is the study of interactions between travellers (including pedestrians, cyclists, drivers, and their vehicles) and infrastructure (including highways, signage, and traffic control devices), with the aim of understanding and developing an optimal transport network with efficient movement of traffic and minimal traffic congestion problems.
Correlation clusteringClustering is the problem of partitioning data points into groups based on their similarity. Correlation clustering provides a method for clustering a set of objects into the optimum number of clusters without specifying that number in advance. Cluster analysis In machine learning, correlation clustering or cluster editing operates in a scenario where the relationships between the objects are known instead of the actual representations of the objects.
Determining the number of clusters in a data setDetermining the number of clusters in a data set, a quantity often labelled k as in the k-means algorithm, is a frequent problem in data clustering, and is a distinct issue from the process of actually solving the clustering problem. For a certain class of clustering algorithms (in particular k-means, k-medoids and expectation–maximization algorithm), there is a parameter commonly referred to as k that specifies the number of clusters to detect.
Amas globulaireEn astronomie, un amas globulaire est un amas stellaire très dense, contenant typiquement une centaine de milliers d'étoiles distribuées dans une sphère dont la taille varie d'une vingtaine à quelques centaines d'années-lumière. Leur densité est ainsi nettement plus élevée que celle des amas ouverts. Les étoiles de ces amas sont généralement des géantes rouges. On compte globulaires dans notre galaxie, la Voie lactée. Mais il en existe sans doute d'autres, qui restent indétectables parce que masqués par le disque galactique.
Amas ouvertEn astronomie, un amas ouvert est un amas stellaire groupant environ de 100 à étoiles de même âge liées entre elles par la gravitation, et dont le diamètre varie de 1,5 à 15 pc, avec une moyenne de 4 à 5 pc. Les amas ouverts sont peu lumineux et s’observent essentiellement dans notre Galaxie, où ils se situent dans le plan galactique, et dans les galaxies proches : les deux Nuages de Magellan et la galaxie d’Andromède. On pense qu'ils se forment au sein des nuages moléculaires, les grands nuages de gaz et de poussières qui constituent les nébuleuses diffuses.
Regroupement hiérarchiqueDans le domaine de l'analyse et de la classification automatique de données, le regroupement hiérarchique est un partitionnement de données ou clustering, au moyen de diverses méthodes, dites « ascendantes » et « descendantes ». Les méthodes dites « descendantes » partent d’une solution générale vers une autre plus spécifique. Les méthodes de cette catégorie démarrent avec une seule classe contenant la totalité puis se divisent à chaque étape selon un critère jusqu’à l’obtention d’un ensemble de classes différentes.