Maximum de vraisemblanceEn statistique, l'estimateur du maximum de vraisemblance est un estimateur statistique utilisé pour inférer les paramètres de la loi de probabilité d'un échantillon donné en recherchant les valeurs des paramètres maximisant la fonction de vraisemblance. Cette méthode a été développée par le statisticien Ronald Aylmer Fisher en 1922. Soient neuf tirages aléatoires x1, ..., x9 suivant une même loi ; les valeurs tirées sont représentées sur les diagrammes ci-dessous par des traits verticaux pointillés.
Événement climatique extrêmeUn événement climatique extrême ou événement météorologique extrême est un phénomène météorologique caractérisé par sa rareté, son intensité ou les dégâts qu'il provoque, selon la définition retenue. Les canicules, vagues de froid, cyclones tropicaux, sécheresses en sont des exemples. La fréquence et l'intensité de certains événements climatiques extrêmes augmentent en conséquence du réchauffement climatique d'origine anthropique.
Évaluation des risquesDans le domaine de la gestion des risques, l'évaluation des risques est l'ensemble des méthodes consistant à calculer la criticité (pertinence et gravité) des dangers. Elle vise outre à les quantifier, à qualifier les dangers (qui doivent donc préalablement avoir été identifiés). Elle se base sur . Dans ce domaine, on se restreint à l'étude du risque aryétique, c'est-à-dire en ne considérant que les événements à conséquences négatives.
RisqueLe risque est la possibilité de survenue d'un événement indésirable, la probabilité d’occurrence d'un péril probable ou d'un aléa. Le risque est une notion complexe, de définitions multiples car d'usage multidisciplinaire. Néanmoins, il est un concept très usité depuis le , par exemple sous la forme de l'expression , notamment pour qualifier, dans le sens commun, un événement, un inconvénient qu'il est raisonnable de prévenir ou de redouter l'éventualité.
Inférence statistiquevignette|Illustration des 4 principales étapes de l'inférence statistique L'inférence statistique est l'ensemble des techniques permettant d'induire les caractéristiques d'un groupe général (la population) à partir de celles d'un groupe particulier (l'échantillon), en fournissant une mesure de la certitude de la prédiction : la probabilité d'erreur. Strictement, l'inférence s'applique à l'ensemble des membres (pris comme un tout) de la population représentée par l'échantillon, et non pas à tel ou tel membre particulier de cette population.
Gestion des risquesLa gestion des risques, ou l'anglicisme, management du risque (de l'risk management), est la discipline visant à identifier, évaluer et hiérarchiser les risques liés aux activités d'une organisation, quelles que soient la nature ou l'origine de ces risques, puis à les traiter méthodiquement, de manière coordonnée et économique, afin de réduire et contrôler la probabilité des événements redoutés, et leur impact éventuel.
Statistical assumptionStatistics, like all mathematical disciplines, does not infer valid conclusions from nothing. Inferring interesting conclusions about real statistical populations almost always requires some background assumptions. Those assumptions must be made carefully, because incorrect assumptions can generate wildly inaccurate conclusions. Here are some examples of statistical assumptions: Independence of observations from each other (this assumption is an especially common error). Independence of observational error from potential confounding effects.
Long-range dependenceLong-range dependence (LRD), also called long memory or long-range persistence, is a phenomenon that may arise in the analysis of spatial or time series data. It relates to the rate of decay of statistical dependence of two points with increasing time interval or spatial distance between the points. A phenomenon is usually considered to have long-range dependence if the dependence decays more slowly than an exponential decay, typically a power-like decay. LRD is often related to self-similar processes or fields.
Inférence bayésiennevignette|Illustration comparant les approches fréquentiste et bayésienne (Christophe Michel, 2018). L’inférence bayésienne est une méthode d'inférence statistique par laquelle on calcule les probabilités de diverses causes hypothétiques à partir de l'observation d'événements connus. Elle s'appuie principalement sur le théorème de Bayes. Le raisonnement bayésien construit, à partir d'observations, une probabilité de la cause d'un type d'événements.
Statistical theoryThe theory of statistics provides a basis for the whole range of techniques, in both study design and data analysis, that are used within applications of statistics. The theory covers approaches to statistical-decision problems and to statistical inference, and the actions and deductions that satisfy the basic principles stated for these different approaches. Within a given approach, statistical theory gives ways of comparing statistical procedures; it can find a best possible procedure within a given context for given statistical problems, or can provide guidance on the choice between alternative procedures.