Hauteur d'un triangleEn géométrie plane, une hauteur d'un triangle est une droite passant par un sommet et coupant perpendiculairement le côté opposé à ce sommet (éventuellement prolongé). Les pieds des hauteurs sont les projetés orthogonaux de chacun des sommets sur la droite portant le côté opposé. On donne également le nom de hauteur au segment joignant un sommet et le pied de la hauteur passant par ce sommet, ainsi qu'à la longueur de ce segment, soit la distance séparant un sommet et la droite portant son côté opposé.
Centre du triangleEn géométrie plane, la notion de centre du triangle est une notion qui généralise celle de centre d'un carré ou d'un cercle. Certains points remarquables du triangle, comme le centre de gravité, le centre du cercle circonscrit, le centre du cercle inscrit et l'orthocentre sont connus depuis la Grèce antique et constructibles simplement. Chacun de ces centres classiques a la propriété d'être invariant (plus précisément équivariant) par similitudes.
Plasticité neuronalevignette|Effets schématiques de la neuroplasticité après entraînement Plasticité neuronale, neuroplasticité ou encore plasticité cérébrale sont des termes génériques qui décrivent les mécanismes par lesquels le cerveau est capable de se modifier lors des processus de neurogenèse dès la phase embryonnaire ou lors d'apprentissages. Elle s’exprime par la capacité du cerveau de créer, défaire ou réorganiser les réseaux de neurones et les connexions de ces neurones. Le cerveau est ainsi qualifié de « plastique » ou de « malléable ».
Pedal triangleIn geometry, a pedal triangle is obtained by projecting a point onto the sides of a triangle. More specifically, consider a triangle ABC, and a point P that is not one of the vertices A, B, C. Drop perpendiculars from P to the three sides of the triangle (these may need to be produced, i.e., extended). Label L, M, N the intersections of the lines from P with the sides BC, AC, AB. The pedal triangle is then LMN. If ABC is not an obtuse triangle, P is the orthocenter then the angles of LMN are 180°−2A, 180°−2B and 180°−2C.
LosangeUn losange est un quadrilatère dont les côtés ont tous la même longueur, ou encore un parallélogramme ayant au moins deux côtés consécutifs de même longueur. Il était anciennement appelé rhombe du grec ρόμβος (et porte toujours un nom tiré de cette étymologie dans de nombreuses langues, comme rhombus en anglais ou encore rombo en espagnol et en italien). L'adjectif qui lui est relatif est rhombique.
Loi de comportementLes lois de comportement de la matière, étudiées en science des matériaux et notamment en mécanique des milieux continus, visent à modéliser le comportement des fluides ou solides par des lois empiriques lors de leur déformation. Les modèles ci-dessous sont volontairement simplifiés, afin de permettre d'appréhender les notions élémentaires.
Plasticité fonction du temps d'occurrence des impulsionsLa (en Spike-timing-dependent plasticity, STDP) est un processus de modification du poids des synapses. Cette modification dépend du moment de déclenchement du potentiel d'action dans les neurones pré- et post-synaptique. Ce processus permettrait d'expliquer partiellement le développement cérébral et la mémorisation, en provoquant potentialisation à long terme (en Long-term potentiation, LTP) et dépression à long terme (en Long-term depression, LTD) des synapses.
AvalancheUne avalanche () de neige est d'abord un phénomène physique : une masse de neige qui se détache puis dévale un versant de montagne sous l'effet de la pesanteur, ou, formulé autrement, le mouvement rapide sur une grande pente d'un volume de neige, à la suite d'une rupture d'équilibre dans le manteau neigeux initial. Une avalanche de neige est aussi un aléa avec la possibilité qu'une telle menace (déclenchement, écoulement, impact) se réalise dans un lieu donné à un instant donné.
Points cocycliquesEn géométrie, des points du plan sont dits cocycliques s'ils appartiennent à un même cercle. Trois points non alignés du plan sont cocycliques. En effet, tout triangle possède un cercle circonscrit. vignette La propriété précédente est un corollaire du théorème de l'angle inscrit. Si sont les affixes respectives de , la condition précédente s'écrit aussi D'où en utilisant le birapport, la condition équivalente : Le théorème de Ptolémée donne une condition nécessaire et suffisante de cocyclicité de quatre points par leurs distances.
Infinitesimal strain theoryIn continuum mechanics, the infinitesimal strain theory is a mathematical approach to the description of the deformation of a solid body in which the displacements of the material particles are assumed to be much smaller (indeed, infinitesimally smaller) than any relevant dimension of the body; so that its geometry and the constitutive properties of the material (such as density and stiffness) at each point of space can be assumed to be unchanged by the deformation.