Théorème CAPthumb|Représentation des contraintes du théorème CAP. Le théorème CAP ou CDP, aussi connu sous le nom de théorème de Brewer, dit qu'il est impossible sur un système informatique de calcul distribué de garantir en même temps (c'est-à-dire de manière synchrone) les trois contraintes suivantes : Cohérence (Consistency en anglais) : tous les nœuds du système voient exactement les mêmes données au même moment ; Disponibilité (Availability en anglais) : garantie que toutes les requêtes reçoivent une réponse ; Tolérance au partitionnement (Partition Tolerance en anglais) : aucune panne moins importante qu'une coupure totale du réseau ne doit empêcher le système de répondre correctement (ou encore : en cas de morcellement en sous-réseaux, chacun doit pouvoir fonctionner de manière autonome).
Nombre abondantEn mathématiques, un nombre abondant est un nombre entier naturel non nul qui est strictement inférieur à la somme de ses diviseurs stricts ; autrement dit, c'est un entier n strictement positif tel que : où est la somme des entiers positifs diviseurs de n, cette fois. Exemples : Prenons le nombre 10 : Les diviseurs de 10 sont 1, 2, et 5. La somme 1 + 2 + 5 donne 8. Or 8 est inférieur à 10. Conclusion : 10 n'est donc pas un nombre abondant. Prenons le nombre 12 : Les diviseurs de 12 sont 1, 2, 3, 4, et 6.
Consistency criterionA voting system is consistent if, whenever the electorate is divided (arbitrarily) into several parts and elections in those parts garner the same result, then an election of the entire electorate also garners that result. Smith calls this property separability and Woodall calls it convexity. It has been proven a ranked voting system is "consistent if and only if it is a scoring function", i.e. a positional voting system. Borda count is an example of this. The failure of the consistency criterion can be seen as an example of Simpson's paradox.
Série convergenteEn mathématiques, une série est dite convergente si la suite de ses sommes partielles a une limite dans l'espace considéré. Dans le cas contraire, elle est dite divergente. Pour des séries numériques, ou à valeurs dans un espace de Banach — c'est-à-dire un espace vectoriel normé complet —, il suffit de prouver la convergence absolue de la série pour montrer sa convergence, ce qui permet de se ramener à une série à termes réels positifs. Pour étudier ces dernières, il existe une large variété de résultats, tous fondés sur le principe de comparaison.
Partition d'un ensemblevignette|Les 52 partitions d'un ensemble à 5 éléments. Les points noirs représentent les éléments de l'ensemble. Une région colorée correspond à un bloc de la partition qui regroupe plusieurs points noirs. Un point noir isolé signifie que cet élément appartient à un bloc qui est un singleton. En mathématiques, une partition d'un ensemble X est un ensemble de parties non vides de X deux à deux disjointes et dont l'union est X. Soit un ensemble X.
Gentzen's consistency proofGentzen's consistency proof is a result of proof theory in mathematical logic, published by Gerhard Gentzen in 1936. It shows that the Peano axioms of first-order arithmetic do not contain a contradiction (i.e. are "consistent"), as long as a certain other system used in the proof does not contain any contradictions either. This other system, today called "primitive recursive arithmetic with the additional principle of quantifier-free transfinite induction up to the ordinal ε0", is neither weaker nor stronger than the system of Peano axioms.
Mathematical objectA mathematical object is an abstract concept arising in mathematics. In the usual language of mathematics, an object is anything that has been (or could be) formally defined, and with which one may do deductive reasoning and mathematical proofs. Typically, a mathematical object can be a value that can be assigned to a variable, and therefore can be involved in formulas. Commonly encountered mathematical objects include numbers, sets, functions, expressions, geometric objects, transformations of other mathematical objects, and spaces.
Objet initial et objet finalEn mathématiques, et plus particulièrement en théorie des catégories, un objet initial et un objet final sont des objets qui permettent de définir une propriété universelle. Donnons-nous une catégorie . Un objet de est dit initial si pour tout objet de , il existe une et une seule flèche de vers . De même, un objet est dit final (ou terminal) si pour tout objet , il existe une et une seule flèche de vers . En particulier, la seule flèche d'un objet initial (ou final) vers lui-même est l'identité.