Epsilon d'une machineL'epsilon d'un microprocesseur (abrégé en eps) donne la limite supérieure de l'erreur d'approximation relative causé par l'arrondi des calculs de ce microprocesseur en arithmétique à virgule flottante. Cette valeur est une caractéristique de l'arithmétique des ordinateurs dans le domaine de l'analyse numérique, et par extension dans le sujet du calcul scientifique. Les valeurs d'epsilon standards suivantes s'appliquent pour le matériel implémentant les normes IEEE de calcul en virgule flottante: Une procédure d'arrondi est une procédure de choix de la représentation d'un nombre réel dans un système de numération en virgule flottante.
IEEE 754En informatique, l’IEEE 754 est une norme sur l'arithmétique à virgule flottante mise au point par le Institute of Electrical and Electronics Engineers. Elle est la norme la plus employée actuellement pour le calcul des nombres à virgule flottante avec les CPU et les FPU. La norme définit les formats de représentation des nombres à virgule flottante (signe, mantisse, exposant, nombres dénormalisés) et valeurs spéciales (infinis et NaN), en même temps qu’un ensemble d’opérations sur les nombres flottants.
Floating-point error mitigationFloating-point error mitigation is the minimization of errors caused by the fact that real numbers cannot, in general, be accurately represented in a fixed space. By definition, floating-point error cannot be eliminated, and, at best, can only be managed. Huberto M. Sierra noted in his 1956 patent "Floating Decimal Point Arithmetic Control Means for Calculator": Thus under some conditions, the major portion of the significant data digits may lie beyond the capacity of the registers.
Algorithme de recherche d'un zéro d'une fonctionUn algorithme de recherche d'un zéro d’une fonction est une méthode numérique ou un algorithme de recherche d’une valeur approchée d’un x vérifiant , pour une fonction donnée f. Ici, x est un nombre réel appelé zéro de f ou lorsque f est polynomiale, racine de f. Lorsque x est un vecteur, les algorithmes pour trouver x tel que sont généralement appelés « algorithmes de résolution numérique d'un système d'équations ». Ces algorithmes sont une généralisation des algorithmes de recherche d’un zéro d’une fonction et peuvent s’appliquer à des équations linéaires ou non linéaires.
Unité de calcul en virgule flottantethumbnail|Le Motorola 68882, un coprocesseur arithmétique. Une unité de calcul en virgule flottante (UVF, en anglais floating-point unit, FPU) est une partie d'un processeur, spécialement conçue pour effectuer des opérations sur des nombres à virgule flottante. Tous les processeurs incorporent au moins l'addition, la soustraction et la multiplication. L'opération fused multiply–add (multiplication suivie d'une addition, avec un seul arrondi), requise par la norme IEEE 754 dans sa révision de 2008, est de plus en plus implémentée.
Error analysis (mathematics)In mathematics, error analysis is the study of kind and quantity of error, or uncertainty, that may be present in the solution to a problem. This issue is particularly prominent in applied areas such as numerical analysis and statistics. In numerical simulation or modeling of real systems, error analysis is concerned with the changes in the output of the model as the parameters to the model vary about a mean. For instance, in a system modeled as a function of two variables Error analysis deals with the propagation of the numerical errors in and (around mean values and ) to error in (around a mean ).
Nombre réelEn mathématiques, un nombre réel est un nombre qui peut être représenté par une partie entière et une liste finie ou infinie de décimales. Cette définition s'applique donc aux nombres rationnels, dont les décimales se répètent de façon périodique à partir d'un certain rang, mais aussi à d'autres nombres dits irrationnels, tels que la racine carrée de 2, π et e.
Algorithme de LanczosEn algèbre linéaire, l’algorithme de Lanczos (ou méthode de Lanczos) est un algorithme itératif pour déterminer les valeurs et vecteurs propres d'une matrice carrée, ou la décomposition en valeurs singulières d'une matrice rectangulaire. Cet algorithme n'a pas de lien avec le fenêtrage de Lanczos (utilisé par exemple pour le redimensionnement d'images), si ce n'est que tous les deux tirent leur nom du même inventeur, le physicien et mathématicien hongrois Cornelius Lanczos.
Type (informatique)vignette|Présentation des principaux types de données. En programmation informatique, un type de donnée, ou simplement un type, définit la nature des valeurs que peut prendre une donnée, ainsi que les opérateurs qui peuvent lui être appliqués. La plupart des langages de programmation de haut niveau offrent des types de base correspondant aux données qui peuvent être traitées directement — à savoir : sans conversion ou formatage préalable — par le processeur.
Arithmétique modulaireEn mathématiques et plus précisément en théorie algébrique des nombres, l’arithmétique modulaire est un ensemble de méthodes permettant la résolution de problèmes sur les nombres entiers. Ces méthodes dérivent de l’étude du reste obtenu par une division euclidienne. L'idée de base de l'arithmétique modulaire est de travailler non sur les nombres eux-mêmes, mais sur les restes de leur division par quelque chose. Quand on fait par exemple une preuve par neuf à l'école primaire, on effectue un peu d'arithmétique modulaire sans le savoir : le diviseur est alors le nombre 9.