Mécanique des solides déformablesLa est la branche de la mécanique des milieux continus qui étudie le comportement mécanique des matériaux solides, en particulier leurs mouvements et leurs déformations sous l'action de forces, de changements de température, de changements de phase ou d'autres actions externes ou internes. Une application typique de la mécanique des solides déformables consiste à déterminer à partir d'un certaine géométrie solide d'origine et des chargements qui lui sont appliqués, si le corps répond à certaines exigences de résistance et de rigidité.
Forme (géométrie)En géométrie classique, la forme permet d’identifier ou de distinguer des figures selon qu’elles peuvent ou non être obtenues les unes à partir des autres par des transformations géométriques qui préservent les angles en multipliant toutes les longueurs par un même coefficient d’agrandissement. Au sens commun, la forme d’une figure est en général décrite par la donnée combinatoire d’un nombre fini de points et de segments ou d’autres courbes délimitant des surfaces, des comparaisons de longueurs ou d’angles, d’éventuels angles droits et éventuellement du sens de courbure.
Deformation (engineering)In engineering, deformation refers to the change in size or shape of an object. Displacements are the absolute change in position of a point on the object. Deflection is the relative change in external displacements on an object. Strain is the relative internal change in shape of an infinitesimally small cube of material and can be expressed as a non-dimensional change in length or angle of distortion of the cube. Strains are related to the forces acting on the cube, which are known as stress, by a stress-strain curve.
Automate cellulairethumb|250px|right| À gauche, une règle locale simple : une cellule passe d'un état (i) au suivant (i+1) dans le cycle d'états dès que i+1 est présent dans au moins 3 des 8 cellules voisines. À droite, le résultat (complexe) de l'application répétée de cette règle sur une grille de cellules. Ce type d'automates cellulaires a été découvert par D. Griffeath. Un automate cellulaire consiste en une grille régulière de « cellules » contenant chacune un « état » choisi parmi un ensemble fini et qui peut évoluer au cours du temps.
Hidden attractorIn the bifurcation theory, a bounded oscillation that is born without loss of stability of stationary set is called a hidden oscillation. In nonlinear control theory, the birth of a hidden oscillation in a time-invariant control system with bounded states means crossing a boundary, in the domain of the parameters, where local stability of the stationary states implies global stability (see, e.g. Kalman's conjecture).
Stochastic simulationA stochastic simulation is a simulation of a system that has variables that can change stochastically (randomly) with individual probabilities. Realizations of these random variables are generated and inserted into a model of the system. Outputs of the model are recorded, and then the process is repeated with a new set of random values. These steps are repeated until a sufficient amount of data is gathered. In the end, the distribution of the outputs shows the most probable estimates as well as a frame of expectations regarding what ranges of values the variables are more or less likely to fall in.
Flexion (matériau)En physique (mécanique), la flexion est la déformation d'un objet sous l'action d'une charge. Elle se traduit par une courbure. Dans le cas d'une poutre, elle tend à rapprocher ses deux extrémités. Dans le cas d'une plaque, elle tend à rapprocher deux points diamétralement opposés sous l'action. L'essai de flexion d'une poutre est un essai mécanique utilisé pour tester la résistance en flexion. On utilise la flexion dite « trois points » et la flexion dite « quatre points ».
Effet papillonvignette|Un graphique de l'attracteur étrange de Lorenz pour les valeurs ρ = 28, σ = 10, β = 8/3 « Effet papillon » est une expression qui résume une métaphore concernant le phénomène fondamental de sensibilité aux conditions initiales de la théorie du chaos. La formulation exacte qui en est à l'origine fut exprimée par Edward Lorenz lors d'une conférence scientifique en 1972, dont le titre était : vignette|Le battement d'ailes du papillon.
Espace des phasesdroite|vignette| Trajectoires dans l'espace des phases pour un pendule simple. L'axe X correspond à la position du pendule, et l'axe Y sa vitesse. Dans la théorie des systèmes dynamiques, l'espace des phases (ou espace d'état) d'un système est l'espace mathématique dans lequel tous les états possibles du système sont représentés ; chaque état possible correspondant à un point unique dans l'espace des phases. Pour un système mécanique, l'espace des phases se compose généralement de toutes les valeurs possibles des variables de position et d'impulsion représentant le système.
Système dynamiqueEn mathématiques, en chimie ou en physique, un système dynamique est la donnée d’un système et d’une loi décrivant l'évolution de ce système. Ce peut être l'évolution d'une réaction chimique au cours du temps, le mouvement des planètes dans le système solaire (régi par la loi universelle de la gravitation de Newton) ou encore l'évolution de la mémoire d'un ordinateur sous l'action d'un programme informatique. Formellement on distingue les systèmes dynamiques à temps discrets (comme un programme informatique) des systèmes dynamiques à temps continu (comme une réaction chimique).