Théorie de l'approximationEn mathématiques, la théorie de l'approximation concerne la façon dont les fonctions peuvent être approchées par de plus simples fonctions, en donnant une caractérisation quantitative des erreurs introduites par ces approximations. Le problème de l'approximation s'est posé très tôt en géométrie, pour les fonctions trigonométriques : ce sont des fonctions dont on connaît les propriétés (parité, dérivabilité, valeurs en des points particuliers) mais qui ne s'expriment pas à partir d'opérations réalisables à la main (les quatre opérations).
Gram matrixIn linear algebra, the Gram matrix (or Gramian matrix, Gramian) of a set of vectors in an inner product space is the Hermitian matrix of inner products, whose entries are given by the inner product . If the vectors are the columns of matrix then the Gram matrix is in the general case that the vector coordinates are complex numbers, which simplifies to for the case that the vector coordinates are real numbers. An important application is to compute linear independence: a set of vectors are linearly independent if and only if the Gram determinant (the determinant of the Gram matrix) is non-zero.
Consistent estimatorIn statistics, a consistent estimator or asymptotically consistent estimator is an estimator—a rule for computing estimates of a parameter θ0—having the property that as the number of data points used increases indefinitely, the resulting sequence of estimates converges in probability to θ0. This means that the distributions of the estimates become more and more concentrated near the true value of the parameter being estimated, so that the probability of the estimator being arbitrarily close to θ0 converges to one.
Padé tableIn complex analysis, a Padé table is an array, possibly of infinite extent, of the rational Padé approximants Rm, n to a given complex formal power series. Certain sequences of approximants lying within a Padé table can often be shown to correspond with successive convergents of a continued fraction representation of a holomorphic or meromorphic function. Although earlier mathematicians had obtained sporadic results involving sequences of rational approximations to transcendental functions, Frobenius (in 1881) was apparently the first to organize the approximants in the form of a table.
Condition de HölderEn analyse, la continuité höldérienne ou condition de Hölder — nommée d'après le mathématicien allemand Otto Hölder — est une condition suffisante, généralisant celle de Lipschitz, pour qu’une application définie entre deux espaces métriques soit uniformément continue. La définition s’applique donc en particulier pour les fonctions d’une variable réelle. Si (X, d) et (Y, d) sont deux espaces métriques, une fonction f : X → Y est dite a-höldérienne s’il existe une constante C telle que pour tous x, y ∈ X : La continuité höldérienne d’une fonction dépend donc d’un paramètre a ∈ ]0, 1].
Point estimationIn statistics, point estimation involves the use of sample data to calculate a single value (known as a point estimate since it identifies a point in some parameter space) which is to serve as a "best guess" or "best estimate" of an unknown population parameter (for example, the population mean). More formally, it is the application of a point estimator to the data to obtain a point estimate. Point estimation can be contrasted with interval estimation: such interval estimates are typically either confidence intervals, in the case of frequentist inference, or credible intervals, in the case of Bayesian inference.
PréconditionneurEn algèbre linéaire et en analyse numérique, un préconditionneur d'une matrice est une matrice telle que le conditionnement de est plus petit que celui de . Le préconditionnement est surtout utilisé dans les méthodes itératives pour la résolution d'un système linéaire (méthode du gradient, méthode du gradient conjugué, ...). Au lieu de résoudre, on préfère résoudre qui permet de diminuer considérablement le nombre d'itérations dans la méthode de résolution (itérative). On dit que le système est "mieux" conditionné.
Diffusion des ondesLa diffusion est le phénomène par lequel un rayonnement, comme la lumière, le son ou un faisceau de particules, est dévié dans diverses directions par une interaction avec d'autres objets. La diffusion peut être isotrope, c'est-à-dire répartie uniformément dans toutes les directions, ou anisotrope. En particulier, la fraction de l'onde incidente qui est retournée dans la direction d'où elle provient est appelée rétrodiffusion (backscatter en anglais). La diffusion peut s'effectuer avec ou sans variation de fréquence.
Décomposition d'une matrice en éléments propresEn algèbre linéaire, la décomposition d'une matrice en éléments propres est la factorisation de la matrice en une forme canonique où les coefficients matriciels sont obtenus à partir des valeurs propres et des vecteurs propres. Un vecteur non nul v à N lignes est un vecteur propre d'une matrice carrée A à N lignes et N colonnes si et seulement si il existe un scalaire λ tel que : où λ est appelé valeur propre associée à v. Cette dernière équation est appelée « équation aux valeurs propres ».
Opérateur bornéEn mathématiques, la notion d'opérateur borné est un concept d'analyse fonctionnelle. Il s'agit d'une application linéaire L entre deux espaces vectoriels normés X et Y telle que l'image de la boule unité de X est une partie bornée de Y. On montre qu'ils s'identifient aux applications linéaires continues de X dans Y. L'ensemble des opérateurs bornés est muni d'une norme issue des normes de X et de Y, la norme d'opérateur. Une application linéaire L entre les espaces vectoriels normés X et Y est appelée opérateur borné quand l'ensemble est borné.