Régression non linéaireUne régression non linéaire consiste à ajuster un modèle, en général non linéaire, y = ƒa1, ..., am(x) pour un ensemble de valeurs (xi, yi)1 ≤ i ≤ n. Les variables xi et yi peuvent être des scalaires ou des vecteurs. Par « ajuster », il faut comprendre : déterminer les paramètres de la loi, (a1, ..., am), afin de minimiser S = ||ri||, avec : ri = yi - ƒa1, ..., am(xi). ||...|| est une norme. On utilise en général la norme euclidienne, ou norme l2 ; on parle alors de méthode des moindres carrés.
Algorithme d'apprentissage incrémentalEn informatique, un algorithme d'apprentissage incrémental ou incrémentiel est un algorithme d'apprentissage qui a la particularité d'être online, c'est-à-dire qui apprend à partir de données reçues au fur et à mesure du temps. À chaque incrément il reçoit des données d'entrées et un résultat, l'algorithme calcule alors une amélioration du calcul fait pour prédire le résultat à partir des données d'entrées.
Segmented regressionSegmented regression, also known as piecewise regression or broken-stick regression, is a method in regression analysis in which the independent variable is partitioned into intervals and a separate line segment is fit to each interval. Segmented regression analysis can also be performed on multivariate data by partitioning the various independent variables. Segmented regression is useful when the independent variables, clustered into different groups, exhibit different relationships between the variables in these regions.
Statistiques non paramétriquesLa statistique non paramétrique est un domaine de la statistique qui ne repose pas sur des familles de loi de probabilité paramétriques. Les méthodes non paramétriques pour la régression comprennent les histogrammes, les méthodes d'estimation par noyau, les splines et les décompositions dans des dictionnaires de filtres (par exemple décomposition en ondelettes). Bien que le nom de non paramétriques soit donné à ces méthodes, elles reposent en vérité sur l'estimation de paramètres.
Informatique théoriquevignette|Une représentation artistique d'une machine de Turing. Les machines de Turing sont un modèle de calcul. L'informatique théorique est l'étude des fondements logiques et mathématiques de l'informatique. C'est une branche de la science informatique et la science formelle. Plus généralement, le terme est utilisé pour désigner des domaines ou sous-domaines de recherche centrés sur des vérités universelles (axiomes) en rapport avec l'informatique.
Classe de complexitéEn informatique théorique, et plus précisément en théorie de la complexité, une classe de complexité est un ensemble de problèmes algorithmiques dont la résolution nécessite la même quantité d'une certaine ressource. Une classe est souvent définie comme l'ensemble de tous les problèmes qui peuvent être résolus sur un modèle de calcul M, utilisant une quantité de ressources du type R, où n, est la taille de l'entrée. Les classes les plus usuelles sont celles définies sur des machines de Turing, avec des contraintes de temps de calcul ou d'espace.
Kernel regressionIn statistics, kernel regression is a non-parametric technique to estimate the conditional expectation of a random variable. The objective is to find a non-linear relation between a pair of random variables X and Y. In any nonparametric regression, the conditional expectation of a variable relative to a variable may be written: where is an unknown function. Nadaraya and Watson, both in 1964, proposed to estimate as a locally weighted average, using a kernel as a weighting function.
Méthode du gradient conjuguévignette|Illustration de la méthode du gradient conjugué. En analyse numérique, la méthode du gradient conjugué est un algorithme pour résoudre des systèmes d'équations linéaires dont la matrice est symétrique définie positive. Cette méthode, imaginée en 1950 simultanément par Cornelius Lanczos, Eduard Stiefel et Magnus Hestenes, est une méthode itérative qui converge en un nombre fini d'itérations (au plus égal à la dimension du système linéaire).
Régression quantileLes régressions quantiles sont des outils statistiques dont l’objet est de décrire l’impact de variables explicatives sur une variable d’intérêt. Elles permettent une description plus riche que les régressions linéaires classiques, puisqu’elles s’intéressent à l’ensemble de la distribution conditionnelle de la variable d’intérêt et non seulement à la moyenne de celle-ci. En outre, elles peuvent être plus adaptées pour certains types de données (variables censurées ou tronquées, présence de valeurs extrêmes, modèles non linéaires.
Espace de Hilbert à noyau reproduisantEn analyse fonctionnelle, un espace de Hilbert à noyau reproduisant est un espace de Hilbert de fonctions pour lequel toutes les applications sont des formes linéaires continues. De manière équivalente, il existe des espaces qu'on peut définir par des noyaux reproduisants. Le sujet a été originellement et simultanément développé par Nachman Aronszajn et Stefan Bergman en 1950. Les espaces de Hilbert à noyau reproduisant sont parfois désignés sous l’acronyme issu du titre anglais RKHS, pour Reproducing Kernel Hilbert Space.