Groupe discretIn mathematics, a topological group G is called a discrete group if there is no limit point in it (i.e., for each element in G, there is a neighborhood which only contains that element). Equivalently, the group G is discrete if and only if its identity is isolated. A subgroup H of a topological group G is a discrete subgroup if H is discrete when endowed with the subspace topology from G. In other words there is a neighbourhood of the identity in G containing no other element of H.
Remplissage (cryptographie)En cryptographie, le remplissage ou bourrage (padding) consiste à faire en sorte que la taille des données soit compatible avec les algorithmes utilisés. Un grand nombre de schémas cryptographiques décrivent des algorithmes qui utilisent un partitionnement en blocs de taille fixe. Si la taille des données n'est pas un multiple de la taille d'un bloc alors l’utilisation d’un schéma de remplissage doit être envisagé. Plusieurs algorithmes classiques placent le texte en clair dans des grilles rectangulaires ou carrées.
Tour de corpsEn mathématiques, une tour de corps est une suite d'extensions de corps Le nom de tour vient du fait qu'une telle suite est souvent écrite sous la forme Une tour de corps peut aussi bien être finie qu'infinie. est une tour de corps finie composée des corps de nombres rationnels, réels puis complexes. Soit la suite définie par F0 = le corps Q des rationnels et (i.e. Fn+1 est obtenu à partir de Fn en ajoutant la racine 2n-ième de 2). Cette tour de corps est infinie.
Canonical bundleIn mathematics, the canonical bundle of a non-singular algebraic variety of dimension over a field is the line bundle , which is the nth exterior power of the cotangent bundle on . Over the complex numbers, it is the determinant bundle of the holomorphic cotangent bundle . Equivalently, it is the line bundle of holomorphic n-forms on . This is the dualising object for Serre duality on . It may equally well be considered as an invertible sheaf.
Théorème de WedderburnEn mathématiques et plus précisément en algèbre, le théorème de Wedderburn affirme que tout corps qui est fini est nécessairement commutatif. Joseph Wedderburn l'a publié en 1905. vignette|Joseph Wedderburn. Théorème de Wedderburn. — Tout corps fini est commutatif. Remarque sur la terminologie : diverses sources, notamment sous l'influence de l'anglais où le mot field désigne un corps commutatif, posent la commutativité de la multiplication dans la définition d'un corps et en particulier pour les corps finis.
Ordre multiplicatifEn mathématiques et plus précisément en arithmétique modulaire, l'ordre multiplicatif, modulo un entier naturel n, d'un entier relatif a premier à n, est le plus petit entier k > 0 tel que L'ordre de a modulo n est écrit parfois ordn(a). Par exemple, ord7(4) = 3 car 43 ≡ 1 (mod 7), tandis que 42 ≡ 2 (mod 7). De façon équivalente, l'ordre multiplicatif de a modulo n est l'ordre du résidu de a modulo n, dans le groupe multiplicatif U(n) des unités de l'anneau Z/nZ.
Classical modular curveIn number theory, the classical modular curve is an irreducible plane algebraic curve given by an equation Φn(x, y) = 0, such that (x, y) = (j(nτ), j(τ)) is a point on the curve. Here j(τ) denotes the j-invariant. The curve is sometimes called X0(n), though often that notation is used for the abstract algebraic curve for which there exist various models. A related object is the classical modular polynomial, a polynomial in one variable defined as Φn(x, x).
Forgetful functorIn mathematics, in the area of , a forgetful functor (also known as a stripping functor) 'forgets' or drops some or all of the input's structure or properties 'before' mapping to the output. For an algebraic structure of a given signature, this may be expressed by curtailing the signature: the new signature is an edited form of the old one. If the signature is left as an empty list, the functor is simply to take the underlying set of a structure.
Suite arithmétiqueEn mathématiques, une suite arithmétique est une suite (le plus souvent une suite de réels) dans laquelle chaque terme permet de déduire le suivant en lui ajoutant une constante appelée raison. Cette définition peut s'écrire sous la forme d'une relation de récurrence, pour chaque indice n : Cette relation est caractéristique de la progression arithmétique ou croissance linéaire. Elle décrit bien les phénomènes dont la variation est constante au cours du temps, comme l'évolution d'un compte bancaire à intérêts simples.
Geometric genusIn algebraic geometry, the geometric genus is a basic birational invariant p_g of algebraic varieties and complex manifolds. The geometric genus can be defined for non-singular complex projective varieties and more generally for complex manifolds as the Hodge number h^n,0 (equal to h^0,n by Serre duality), that is, the dimension of the canonical linear system plus one. In other words for a variety V of complex dimension n it is the number of linearly independent holomorphic n-forms to be found on V.