In mathematics, in the area of , a forgetful functor (also known as a stripping functor) 'forgets' or drops some or all of the input's structure or properties 'before' mapping to the output. For an algebraic structure of a given signature, this may be expressed by curtailing the signature: the new signature is an edited form of the old one. If the signature is left as an empty list, the functor is simply to take the underlying set of a structure. Because many structures in mathematics consist of a set with an additional added structure, a forgetful functor that maps to the underlying set is the most common case.
As an example, there are several forgetful functors from the . A (unital) ring, described in the language of universal algebra, is an ordered tuple satisfying certain axioms, where and are binary functions on the set , is a unary operation corresponding to additive inverse, and 0 and 1 are nullary operations giving the identities of the two binary operations. Deleting the 1 gives a forgetful functor to the category of rings without unit; it simply "forgets" the unit. Deleting and 1 yields a functor to the category of abelian groups, which assigns to each ring the underlying additive abelian group of . To each morphism of rings is assigned the same function considered merely as a morphism of addition between the underlying groups. Deleting all the operations gives the functor to the underlying set .
It is beneficial to distinguish between forgetful functors that "forget structure" versus those that "forget properties". For example, in the above example of commutative rings, in addition to those functors that delete some of the operations, there are functors that forget some of the axioms. There is a functor from the category CRing to Ring that forgets the axiom of commutativity, but keeps all the operations. Occasionally the object may include extra sets not defined strictly in terms of the underlying set (in this case, which part to consider the underlying set is a matter of taste, though this is rarely ambiguous in practice).
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En mathématiques, la notion d'objet libre est l'un des concepts de base de l'algèbre générale. Elle appartient à l'algèbre universelle, car elle s'applique à tous les types de structures algébriques (avec des opérations finitaires). Elle se formule plus généralement dans le langage de la théorie des catégories : le foncteur « objet libre » est l'adjoint à gauche du foncteur d'oubli. Des exemples d'objets libres sont les groupes libres, les groupes abéliens libres, les algèbres tensorielles...
En mathématiques, un pseudo-anneau est une des structures algébriques utilisées en algèbre générale. C'est un ensemble muni d'une addition et d'une multiplication qui vérifient les mêmes axiomes que celles d'un anneau, à ceci près qu'on n'exige pas la présence d'un élément neutre pour la multiplication. Une minorité d'auteurs ne demandent pas aux anneaux d'avoir un neutre multiplicatif ; si l'on se réfère à leurs conventions, le présent article traite donc de ce qu'ils appellent des anneaux.
In mathematics, especially in the area of abstract algebra known as ring theory, a free algebra is the noncommutative analogue of a polynomial ring since its elements may be described as "polynomials" with non-commuting variables. Likewise, the polynomial ring may be regarded as a free commutative algebra. For R a commutative ring, the free (associative, unital) algebra on n indeterminates {X1,...,Xn} is the free R-module with a basis consisting of all words over the alphabet {X1,...
This course will provide an introduction to model category theory, which is an abstract framework for generalizing homotopy theory beyond topological spaces and continuous maps. We will study numerous
Après une introduction à la théorie des catégories, nous appliquerons la théorie générale au cas particulier des groupes, ce qui nous permettra de bien mettre en perspective des notions telles que quo
Singular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a
In this thesis, we give a modern treatment of Dwyer's tame homotopy theory using the language of ∞-categories.We introduce the notion of tame spectra and show it has a concrete algebraic description.We then carry out a study of ∞-operads and ...
Let G be either a simple linear algebraic group over an algebraically closed field of characteristic l>0 or a quantum group at an l-th root of unity. The category Rep(G) of finite-dimensional G-modules is non-semisimple. In this thesis, we develop new tech ...
A correspondence functor is a functor from the category of finite sets and correspondences to the category of k-modules, where k is a commutative ring. By means of a suitably defined duality, new correspondence functors are constructed, having remarkable p ...