Théorème du rangEn mathématiques, et plus précisément en algèbre linéaire, le théorème du rang lie le rang d'une application linéaire et la dimension de son noyau. C'est un corollaire d'un théorème d'isomorphisme. Il peut être interprété par la notion d'indice d'application linéaire. En dimension finie, il permet notamment de caractériser l'inversibilité d'une application linéaire ou d'une matrice par son rang. vignette|Le théorème du rang.
Comparaison asymptotiqueEn mathématiques, plus précisément en analyse, la comparaison asymptotique est une méthode consistant à étudier la vitesse de croissance d'une fonction au voisinage d'un point ou à l'infini, en la comparant à celle d'une autre fonction considérée comme plus « simple ». Celle-ci est souvent choisie sur une échelle de référence, contenant en général au moins certaines fonctions dites élémentaires, en particulier les sommes et produits de polynômes, d'exponentielles et de logarithmes.
Optimisation SDPEn mathématiques et en informatique théorique, l'optimisation SDP ou semi-définie positive, est un type d'optimisation convexe, qui étend l'optimisation linéaire. Dans un problème d'optimisation SDP, l'inconnue est une matrice symétrique que l'on impose d'être semi-définie positive. Comme en optimisation linéaire, le critère à minimiser est linéaire et l'inconnue doit également satisfaire une contrainte affine. L'optimisation SDP se généralise par l'optimisation conique, qui s'intéresse aux problèmes de minimisation d'une fonction linéaire sur l'intersection d'un cône et d'un sous-espace affine.
Diviser pour régner (informatique)thumb|652x652px|Trois étapes (diviser, régner, combiner) illustrées avec l'algorithme du tri fusion En informatique, diviser pour régner (du latin , divide and conquer en anglais) est une technique algorithmique consistant à : Diviser : découper un problème initial en sous-problèmes ; Régner : résoudre les sous-problèmes (récursivement ou directement s'ils sont assez petits) ; Combiner : calculer une solution au problème initial à partir des solutions des sous-problèmes.
Transformation de Fourier rapideLa transformation de Fourier rapide (sigle anglais : FFT ou fast Fourier transform) est un algorithme de calcul de la transformation de Fourier discrète (TFD). Sa complexité varie en O(n log n) avec le nombre n de points, alors que la complexité de l’algorithme « naïf » s'exprime en O(n). Ainsi, pour n = , le temps de calcul de l'algorithme rapide peut être 100 fois plus court que le calcul utilisant la formule de définition de la TFD.
Analyse de la complexité des algorithmesvignette|Représentation d'une recherche linéaire (en violet) face à une recherche binaire (en vert). La complexité algorithmique de la seconde est logarithmique alors que celle de la première est linéaire. L'analyse de la complexité d'un algorithme consiste en l'étude formelle de la quantité de ressources (par exemple de temps ou d'espace) nécessaire à l'exécution de cet algorithme. Celle-ci ne doit pas être confondue avec la théorie de la complexité, qui elle étudie la difficulté intrinsèque des problèmes, et ne se focalise pas sur un algorithme en particulier.
Matrice (mathématiques)thumb|upright=1.5 En mathématiques, les matrices sont des tableaux d'éléments (nombres, caractères) qui servent à interpréter en termes calculatoires, et donc opérationnels, les résultats théoriques de l'algèbre linéaire et même de l'algèbre bilinéaire. Toutes les disciplines étudiant des phénomènes linéaires utilisent les matrices. Quant aux phénomènes non linéaires, on en donne souvent des approximations linéaires, comme en optique géométrique avec les approximations de Gauss.
SchemeScheme (prononciation : ) est un langage de programmation dérivé du langage fonctionnel Lisp, créé dans les années 1970 au Massachusetts Institute of Technology (MIT) par Gerald Jay Sussman et Guy L. Steele. Le but des créateurs du langage était d'épurer le Lisp en conservant les aspects essentiels, la flexibilité et la puissance expressive. Scheme a donc une syntaxe extrêmement simple, avec un nombre très limité de mots-clés. Comme en Lisp, la notation préfixée permet de s'affranchir d'une précédence des opérateurs.
Algorithme de sélectionEn algorithmique, un algorithme de sélection est une méthode ayant pour but de trouver le k-ième plus petit élément d'un ensemble d'objets (étant donné un ordre et un entier k). La question de la sélection est un problème essentiel en algorithmique, notamment dans la recherche du maximum, du minimum et de la médiane. Plusieurs algorithmes ont été proposés et plusieurs contextes ont été étudiés : algorithmes en ligne, complexité amortie, complexité en moyenne, ensemble d'objet particuliers etc.
Algorithme de multiplication d'entiersLes algorithmes de multiplication permettent de calculer le résultat d'une multiplication. Graphiquement, il s'agit de transformer un rectangle multiplicateur × multiplicande en une ligne, en conservant le nombre d'éléments. Ce type de multiplication n'utilise que des additions et des multiplications ou des divisions par 2. Elle ne nécessite pas de connaître de table de multiplication (autre que la multiplication par 2).