Matrice triangulairevignette|algèbre linéaire En algèbre linéaire, une matrice triangulaire est une matrice carrée dont tous les coefficients sont nuls d’un côté ou de l’autre de la diagonale principale. C’est en particulier le cas si la matrice est diagonale. Une matrice est triangulaire stricte si elle est triangulaire et que tous ses coefficients diagonaux sont nuls. Dans ce qui suit, on considérera un anneau unitaire R non forcément commutatif, des R-modules à gauche et des R-modules à droite.
Matrice antisymétriqueEn mathématiques, et plus précisément en algèbre linéaire, une matrice antisymétrique est une matrice carrée opposée à sa transposée. Une matrice carrée A à coefficients dans un anneau quelconque est dite antisymétrique si sa transposée est égale à son opposée, c'est-à-dire si elle satisfait à l'équation : A = –A ou encore, en l'écrivant avec des coefficients sous la forme A = (ai,j), si : pour tout i et j, aj,i = –ai,j Les matrices suivantes sont antisymétriques : Le cas où la matrice est à coefficients dans un anneau de caractéristique 2 est très particulier.
Matrices de PauliLes matrices de Pauli, développées par Wolfgang Pauli, forment, au facteur i près, une base de l'algèbre de Lie du groupe SU(2). Elles sont définies comme l'ensemble de matrices complexes de dimensions suivantes : (où i est l’unité imaginaire des nombres complexes). Ces matrices sont utilisées en mécanique quantique pour représenter le spin des particules, notamment dès 1927 dans l'étude non-relativiste du spin de l'électron : l'équation de Pauli.
Higher-dimensional gamma matricesIn mathematical physics, higher-dimensional gamma matrices generalize to arbitrary dimension the four-dimensional Gamma matrices of Dirac, which are a mainstay of relativistic quantum mechanics. They are utilized in relativistically invariant wave equations for fermions (such as spinors) in arbitrary space-time dimensions, notably in string theory and supergravity. The Weyl–Brauer matrices provide an explicit construction of higher-dimensional gamma matrices for Weyl spinors.
Matrix multiplication algorithmBecause matrix multiplication is such a central operation in many numerical algorithms, much work has been invested in making matrix multiplication algorithms efficient. Applications of matrix multiplication in computational problems are found in many fields including scientific computing and pattern recognition and in seemingly unrelated problems such as counting the paths through a graph. Many different algorithms have been designed for multiplying matrices on different types of hardware, including parallel and distributed systems, where the computational work is spread over multiple processors (perhaps over a network).
Théorème de la dimension pour les espaces vectorielsEn mathématiques, le théorème de la dimension pour les espaces vectoriels énonce que deux bases quelconques d'un même espace vectoriel ont même cardinalité. Joint au théorème de la base incomplète qui assure l'existence de bases, il permet de définir la dimension d'un espace vectoriel comme le cardinal (fini ou infini) commun à toutes ses bases. (Donc par symétrie, deux bases quelconques ont même cardinal.) Soient L libre et G génératrice de E, montrons que |L| ≤ |G|. Notons n = |G|.
Quantum algorithmIn quantum computing, a quantum algorithm is an algorithm which runs on a realistic model of quantum computation, the most commonly used model being the quantum circuit model of computation. A classical (or non-quantum) algorithm is a finite sequence of instructions, or a step-by-step procedure for solving a problem, where each step or instruction can be performed on a classical computer. Similarly, a quantum algorithm is a step-by-step procedure, where each of the steps can be performed on a quantum computer.
Matrice unimodulaireEn algèbre linéaire, une matrice unimodulaire sur l'anneau des entiers relatifs est une matrice carrée à coefficients entiers dont le déterminant vaut +1 ou –1. Plus généralement, une matrice unimodulaire sur un anneau commutatif A est une matrice inversible à coefficients dans A, dont l'inverse est aussi à coefficients dans A. Le groupe général linéaire GL(A) des matrices unimodulaires de taille n sur l'anneau A est donc constitué des matrices dont le déterminant est inversible dans A.
Matrice unitaireEn algèbre linéaire, une matrice carrée U à coefficients complexes est dite unitaire si elle vérifie les égalités : où la matrice adjointe de U est notée U* (ou U en physique, et plus particulièrement en mécanique quantique) et I désigne la matrice identité. L'ensemble des matrices unitaires de taille n forme le groupe unitaire U(n). Les matrices unitaires carrées à coefficients réels sont les matrices orthogonales.
Dépassement d'entiervignette|Le vol 501 d'Ariane 5 en 1996 s'est soldé par sa destruction en raison d'un dépassement d'entier. Un dépassement d'entier (integer overflow) est, en informatique, une condition qui se produit lorsqu'une opération mathématique produit une valeur numérique supérieure à celle représentable dans l'espace de stockage disponible. Par exemple, l'ajout d'une unité au plus grand nombre pouvant être représenté entraîne un dépassement d'entier. Le dépassement d'entier porte le numéro CWE-190 dans la nomenclature Common Weakness Enumeration.