Taux d'erreurLe taux d'erreur ou B.E.R., abréviation de l'expression anglaise Bit Error Rate, désigne une valeur, relative au taux d'erreur, mesurée à la réception d'une transmission numérique, relative au niveau d'atténuation et/ou de perturbation d'un signal transmis. Ce phénomène survient également lors de l'échantillonnage (numérisation), lors de la lecture et de la sauvegarde des données (CD-R, DVD-R, disque dur, RAM...). Ce taux détermine le nombre d'erreurs apparues entre la modulation et juste après la démodulation du signal.
Distance de LevenshteinLa 'distance de Levenshtein' est une distance, au sens mathématique du terme, donnant une mesure de la différence entre deux chaînes de caractères. Elle est égale au nombre minimal de caractères qu'il faut supprimer, insérer ou remplacer pour passer d’une chaîne à l’autre. Elle a été proposée par Vladimir Levenshtein en 1965. Elle est également connue sous les noms de distance d'édition ou de déformation dynamique temporelle, notamment en reconnaissance de formes et particulièrement en reconnaissance vocale.
Distance d'édition sur les arbresEn informatique théorique, en biochimie et aussi dans des applications, en vision par ordinateur par exemple, la distance d'édition d'arbres (en anglais tree edit distance) est une mesure qui évalue, en termes de nombre de transformations élémentaires, le nombre d'opérations nécessaires et leur coût pour passer d'un arbre à un autre. C'est une notion qui étend, aux arbres, la distance d'édition (ou distance de Levenshtein) entre chaînes de caractères.
Kappa de CohenEn statistique, la méthode du κ (kappa) mesure l’accord entre observateurs lors d'un codage qualitatif en catégories. L'article introduisant le κ a pour auteur Jacob Cohen – d'où sa désignation de κ de Cohen – et est paru dans le journal Educational and Psychological Measurement en 1960. Le κ est une mesure d'accord entre deux codeurs seulement. Pour une mesure de l'accord entre plus de deux codeurs, on utilise le κ de Fleiss (1981). Le calcul du κ se fait de la manière suivante : où Pr(a) est la proportion de l'accord entre codeurs et Pr(e) la probabilité d'un accord aléatoire.
Kappa de FleissKappa de Fleiss (nommé d'après Joseph L. Fleiss) est une mesure statistique qui évalue la concordance lors de l'assignation qualitative d'objets au sein de catégories pour un certain nombre d'observateurs. Cela contraste avec d'autres kappas tel que le Kappa de Cohen, qui ne fonctionne que pour évaluer la concordance entre deux observateurs. La mesure calcule le degré de concordance de la classification par rapport à ce qui pourrait être attendu si elle était faite au hasard.
Indépendance linéaireEn algèbre linéaire, étant donné une famille de vecteurs d'un même espace vectoriel, les vecteurs de la famille sont linéairement indépendants, ou forment une famille libre, si la seule combinaison linéaire de ces vecteurs qui soit égale au vecteur nul est celle dont tous les coefficients sont nuls. Cela revient à dire qu'aucun des vecteurs de la famille n'est combinaison linéaire des autres. Dans le cas où des vecteurs ne sont pas linéairement indépendants, on dit qu'ils sont linéairement dépendants, ou qu'ils forment une famille liée.
Forme linéaireEn algèbre linéaire, une forme linéaire sur un espace vectoriel est une application linéaire sur son corps de base. En dimension finie, elle peut être représentée par une matrice ligne qui permet d’associer à son noyau une équation cartésienne. Dans le cadre du calcul tensoriel, une forme linéaire est aussi appelée covecteur, en lien avec l’action différente des matrices de changement de base.
Combinaison linéaireEn mathématiques, une combinaison linéaire est une expression construite à partir d'un ensemble de termes en multipliant chaque terme par une constante et en ajoutant le résultat. Par exemple, une combinaison linéaire de x et y serait une expression de la forme ax + by, où a et b sont des constantes. Le concept de combinaison linéaire est central en algèbre linéaire et dans des domaines connexes des mathématiques. La majeure partie de cet article traite des combinaisons linéaires dans le contexte d'espace vectoriel sur un corps commutatif, et indique quelques généralisations à la fin de l'article.
Distance (mathématiques)En mathématiques, une distance est une application qui formalise l'idée intuitive de distance, c'est-à-dire la longueur qui sépare deux points. C'est par l'analyse des principales propriétés de la distance usuelle que Fréchet introduit la notion d'espace métrique, développée ensuite par Hausdorff. Elle introduit un langage géométrique dans de nombreuses questions d'analyse et de théorie des nombres.
Non Return to ZeroDans le code en ligne NRZ, pour non-return-to-zero en anglais, le bit 1 est représenté par un état significatif (par exemple, une tension clairement positive), et le bit 0 par un autre état significatif (par exemple, une tension clairement négative). Il n'existe pas d'état intermédiaire. Le codage est à deux états : le signal se trouve dans un état (par exemple à l’état haut) lorsque des 1 logiques sont transmis, et dans l'autre état (à l’état bas dans l'exemple) lorsque des 0 logiques sont transmis.