Publication

MATHICSE Technical Report : Optimization of mesh hierarchies in multilevel Monte Carlo samplers

Fabio Nobile, Erik Gustaf Bogislaw Von Schwerin
2014
Rapport ou document de travail
Résumé

We perform a general optimization of the parameters in the Multilevel Monte Carlo (MLMC) discretization hierarchy based on uniform discretization methods with general approximation orders and computational costs. Moreover, we discuss extensions to non-uniform discretizations based on a priori renements and the effect of imposing constraints on the largest and/or smallest mesh sizes. We optimize geometric and non-geometric hierarchies and compare them to each other, concluding that the geometric hierarchies, when optimized, are nearly optimal and have the same asymptotic computational complexity. We discuss how enforcing domain constraints on parameters of MLMC hierarchies affects the opti- mality of these hierarchies. These domain constraints include an upper and lower bound on the mesh size or enforcing that the number of samples and the number of discretization elements are integers. We also discuss the optimal tolerance splitting between the bias and the statistical error contributions and its asymp- totic behavior. To provide numerical grounds for our theoretical results, we apply these optimized hierarchies together with the Continuation MLMC Algorithm [13] that we recently developed, to several examples. These include the approxima- tion of three-dimensional elliptic partial differential equations with random inputs based on FEM with either direct or iterative solvers and It^o stochastic differential equations based on the Milstein scheme.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (34)
Équation différentielle
En mathématiques, une équation différentielle est une équation dont la ou les « inconnue(s) » sont des fonctions ; elle se présente sous la forme d'une relation entre ces fonctions inconnues et leurs dérivées successives. C'est un cas particulier d'équation fonctionnelle. On distingue généralement deux types d'équations différentielles : les équations différentielles ordinaires (EDO) où la ou les fonctions inconnues recherchées ne dépendent que d'une seule variable ; les équations différentielles partielles, plutôt appelées équations aux dérivées partielles (EDP), où la ou les fonctions inconnues recherchées peuvent dépendre de plusieurs variables indépendantes.
Équation aux dérivées partielles
En mathématiques, plus précisément en calcul différentiel, une équation aux dérivées partielles (parfois appelée équation différentielle partielle et abrégée en EDP) est une équation différentielle dont les solutions sont les fonctions inconnues dépendant de plusieurs variables vérifiant certaines conditions concernant leurs dérivées partielles. Une EDP a souvent de très nombreuses solutions, les conditions étant moins strictes que dans le cas d'une équation différentielle ordinaire à une seule variable ; les problèmes comportent souvent des conditions aux limites qui restreignent l'ensemble des solutions.
Programmation par contraintes
La programmation par contraintes (PPC, ou CP pour constraint programming en anglais) est un paradigme de programmation apparu dans les années 1970 et 1980 permettant de résoudre des problèmes combinatoires de grande taille tels que les problèmes de planification et d'ordonnancement. En programmation par contraintes, on sépare la partie modélisation à l'aide de problèmes de satisfaction de contraintes (ou CSP pour Constraint Satisfaction Problem), de la partie résolution dont la particularité réside dans l'utilisation active des contraintes du problème pour réduire la taille de l'espace des solutions à parcourir (on parle de propagation de contraintes).
Afficher plus
Publications associées (98)

Scalable constrained optimization

Maria-Luiza Vladarean

Modern optimization is tasked with handling applications of increasingly large scale, chiefly due to the massive amounts of widely available data and the ever-growing reach of Machine Learning. Consequently, this area of research is under steady pressure t ...
EPFL2024

A Combination Technique for Optimal Control Problems Constrained by Random PDEs

Fabio Nobile, Tommaso Vanzan

We present a combination technique based on mixed differences of both spatial approximations and quadrature formulae for the stochastic variables to solve efficiently a class of optimal control problems (OCPs) constrained by random partial differential equ ...
2024

Peak Value-at-Risk Estimation for Stochastic Differential Equations using Occupation Measures

Matteo Raphael Tacchi

This paper proposes an algorithm to upper-bound maximal quantile statistics of a state function over the course of a Stochastic Differential Equation (SDE) system execution. This chance-peak problem is posed as a nonconvex program aiming to maximize the Va ...
New York2023
Afficher plus
MOOCs associés (32)
Warm-up for EPFL
Warmup EPFL est destiné aux nouvelles étudiantes et étudiants de l'EPFL.
Introduction to optimization on smooth manifolds: first order methods
Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).
Algèbre Linéaire (Partie 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.