Théorème du point fixe de BrouwerEn mathématiques, et plus précisément en topologie algébrique, le théorème du point fixe de Brouwer fait partie de la grande famille des théorèmes de point fixe, qui énoncent que si une fonction continue f vérifie certaines propriétés, alors il existe un point x0 tel que f(x0) = x0. La forme la plus simple du théorème de Brouwer prend comme hypothèse que la fonction f est définie sur un intervalle fermé borné non vide I et à valeurs dans I. Sous une forme plus générale, la fonction est définie sur un convexe compact K d'un espace euclidien et à valeurs dans K.
Théorème du point fixe de LefschetzEn mathématiques, le théorème du point fixe de Lefschetz est une formule qui compte le nombre de points fixes d'une application continue d'un espace compact X dans lui-même en utilisant les traces des endomorphismes qu'elle induit sur l'homologie de X. Il est nommé d'après Solomon Lefschetz qui l'a démontré en 1926. Chaque point fixe est compté avec sa multiplicité. Une version faible du théorème suffit à démontrer qu'une application qui n'a aucun point fixe doit vérifier certaines propriétés particulières (comme une rotation du cercle).
Cœur d'un sous-groupeEn mathématiques, et plus précisément en théorie des groupes, l'intersection des conjugués, dans un groupe , d'un sous-groupe de est appelée le cœur de (dans ) et est notée cœurG(H) ou encore . Le cœur de dans est le plus grand sous-groupe normal de contenu dans . Si on désigne par / l'ensemble des classes à gauche de modulo (cet ensemble n'est pas forcément muni d'une structure de groupe, n'étant pas supposé normal dans ), on sait que opère à gauche sur / par : Le cœur de dans est le noyau de cette opération.
Espace de longueurEn mathématiques, un espace de longueur est un espace métrique particulier, qui généralise la notion de variété riemannienne : la distance y est définie par une fonction vérifiant une axiomatique la rendant proche de l'idée concrète de distance. Les espaces de longueur ont été étudiés au début du par et sous le nom d'espaces métriques intrinsèques, et réintroduits plus récemment par Mikhaïl Gromov. Soit X un espace topologique. Une courbe dans X est une application continue , où I est un intervalle de .
Homeomorphism groupIn mathematics, particularly topology, the homeomorphism group of a topological space is the group consisting of all homeomorphisms from the space to itself with function composition as the group operation. Homeomorphism groups are very important in the theory of topological spaces and in general are examples of automorphism groups. Homeomorphism groups are topological invariants in the sense that the homeomorphism groups of homeomorphic topological spaces are isomorphic as groups.
Ensemble infini non dénombrableUn ensemble infini non dénombrable est un ensemble qui est « trop gros » pour être dénombrable. De manière précise, c'est un ensemble infini qui ne peut être mis en bijection avec les entiers naturels. En présence de l'axiome du choix, cela signifie que son cardinal est strictement supérieur au cardinal du dénombrable. On dit souvent simplement ensemble non dénombrable. L'ensemble des nombres réels en est un exemple. Avec l'hypothèse généralisée du continu, un ensemble des cardinalités infinies non dénombr
Orbite en fer à chevalvignette|droite| L'orbite en fer à cheval d'un objet céleste est la trajectoire apparente que semble décrire cet objet lorsqu'il est observé depuis un autre corps céleste avec lequel il coorbite. Soit deux objets secondaires B et C, en révolution autour d'un même objet primaire A, selon un mouvement coorbital. Lorsque C est situé à proximité du , ou du système A-B, l'orbite de C autour de A semble décrire, lorsqu'elle est observée depuis B, un fer à cheval.
DifféotopieEn mathématiques, une difféotopie est une classe d'équivalence pour la relation d’isotopie entre difféomorphismes sur une variété différentielle. Plus explicitement, étant donnés deux difféomorphismes sur une telle variété M, c’est-à-dire deux applications φ, φ : M → M différentiables et bijectives avec des réciproques différentiables, on dit que ces difféomorphismes sont isotopes s’il existe une famille de difféomorphismes φ pour t ∈ ]0, 1[ telle que Φ : (t, x) ↦ φ(x) définisse une application différentiable sur [0, 1] × M.
Dendrite (biologie)Les dendrites (du grec δένδρον déndron «arbre») sont des prolongements du corps cellulaire des neurones dont elles partagent les organites (à l'exception du noyau et des lysosomes). Les dendrites sont des prolongements des neurones moteurs courts et effilés. Les corps cellulaires en contiennent généralement des centaines, avec les mêmes organites. Elles forment la principale structure réceptrice des neurones.
Groupe de CoxeterUn groupe de Coxeter est un groupe engendré par des réflexions sur un espace. Les groupes de Coxeter se retrouvent dans de nombreux domaines des mathématiques et de la géométrie. En particulier, les groupes diédraux, ou les groupes d'isométries de polyèdres réguliers, sont des groupes de Coxeter. Les groupes de Weyl sont d'autres exemples de groupes de Coxeter. Ces groupes sont nommés d'après le mathématicien H.S.M. Coxeter. Un groupe de Coxeter est un groupe W ayant une présentation du type: où est à valeurs dans , est symétrique () et vérifie , si .