Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
We extend the celebrated Rothschild and Stiglitz (1970) definition of Mean-Preserving Spreads to a dynamic framework. We adapt the original integral conditions to transition probability densities, and give sufficient conditions for their satisfaction. We then prove that a specific nonlinear scalar diffusion process, super-diffusive ballistic noise, is the unique process that satisfies the integral conditions among a broad class of processes. This process can be generated by a random superposition of linear Markov processes with constant drifts. This exceptionally simple representation enables us to systematically revisit, by means of the properties of Dynamic Mean-Preserving Spreads, four workhorse economic models originally based on White Gaussian Noise.