Moyenne harmoniqueLa moyenne harmonique H de nombres réels strictement positifs a1, ..., a est définie par : C'est l'inverse de la moyenne arithmétique des inverses des termes. La moyenne harmonique est donc utilisée lorsqu'on veut déterminer un rapport moyen, dans un domaine où il existe des liens de proportionnalité inverses. Dans certains cas, la moyenne harmonique donne la véritable notion de « moyenne ».
Amplitude de probabilitévignette|Une fonction d'onde pour un seul électron dans l'orbite atomique 5d d'un atome d'hydrogène . La forme montre les endroits où la densité de probabilité de l'électron est supérieure à une certaine valeur, celle-ci est calculée avec l'amplitude de probabilité. La teinte sur la surface colorée montre la phase complexe de la fonction d'onde. En mécanique quantique, une amplitude de probabilité est un nombre complexe utilisé pour décrire le comportement d'un système.
Principe de superposition quantiquethumb|Mesure de la position d'un ensemble de particules étant dans le même état superposé. En mécanique quantique, selon le principe de superposition, un même état quantique peut posséder plusieurs valeurs pour une certaine quantité observable (spin, position, quantité de mouvement, etc.) Ce principe résulte du fait que l'état – quel qu'il soit – d'un système quantique (une particule, une paire de particules, un atome, etc.) est représenté par un vecteur dans un espace vectoriel nommé espace de Hilbert (premier postulat de la mécanique quantique).
ErgodicityIn mathematics, ergodicity expresses the idea that a point of a moving system, either a dynamical system or a stochastic process, will eventually visit all parts of the space that the system moves in, in a uniform and random sense. This implies that the average behavior of the system can be deduced from the trajectory of a "typical" point. Equivalently, a sufficiently large collection of random samples from a process can represent the average statistical properties of the entire process.
Ondevignette|Propagation d'une onde. Une onde est la propagation d'une perturbation produisant sur son passage une variation réversible des propriétés physiques locales du milieu. Elle se déplace avec une vitesse déterminée qui dépend des caractéristiques du milieu de propagation. vignette|Une vague s'écrasant sur le rivage. Il existe trois principaux types d'ondes : les ondes mécaniques se propagent à travers une matière physique dont la substance se déforme. Les forces de restauration inversent alors la déformation.
Processus de décision markovienEn théorie de la décision et de la théorie des probabilités, un processus de décision markovien (en anglais Markov decision process, MDP) est un modèle stochastique où un agent prend des décisions et où les résultats de ses actions sont aléatoires. Les MDPs sont utilisés pour étudier des problèmes d'optimisation à l'aide d'algorithmes de programmation dynamique ou d'apprentissage par renforcement. Les MDPs sont connus depuis les années 1950. Une grande contribution provient du travail de Ronald A.
Dynamic linkerIn computing, a dynamic linker is the part of an operating system that loads and links the shared libraries needed by an executable when it is executed (at "run time"), by copying the content of libraries from persistent storage to RAM, filling jump tables and relocating pointers. The specific operating system and executable format determine how the dynamic linker functions and how it is implemented.
Loi uniforme continueEn théorie des probabilités et en statistiques, les lois uniformes continues forment une famille de lois de probabilité à densité. Une telle loi est caractérisée par la propriété suivante : tous les intervalles de même longueur inclus dans le support de la loi ont la même probabilité. Cela se traduit par le fait que la densité de probabilité d'une loi uniforme continue est constante sur son support. Elles constituent donc une généralisation de la notion d'équiprobabilité dans le cas continu pour des variables aléatoires à densité ; le cas discret étant couvert par les lois uniformes discrètes.
Filtre de Kalmanvignette| Concept de base du filtre de Kalman. En statistique et en théorie du contrôle, le filtre de Kalman est un filtre à réponse impulsionnelle infinie qui estime les états d'un système dynamique à partir d'une série de mesures incomplètes ou bruitées. Le filtre a été nommé d'après le mathématicien et informaticien américain d'origine hongroise Rudolf Kálmán. Le filtre de Kalman est utilisé dans une large gamme de domaines technologiques (radar, vision électronique, communication...).
Modèle de Markov cachéUn modèle de Markov caché (MMC, terme et définition normalisés par l’ISO/CÉI [ISO/IEC 2382-29:1999]) — (HMM)—, ou plus correctement (mais non employé) automate de Markov à états cachés, est un modèle statistique dans lequel le système modélisé est supposé être un processus markovien de paramètres inconnus. Contrairement à une chaîne de Markov classique, où les transitions prises sont inconnues de l'utilisateur mais où les états d'une exécution sont connus, dans un modèle de Markov caché, les états d'une exécution sont inconnus de l'utilisateur (seuls certains paramètres, comme la température, etc.